V-Net、U-net、AttentionGatedVNet

由于时间不够简单描述,稍微补全。

Nassir Navab等人发表在IEEE 3D Vison上的论文V-Net,是U-Net[1]的3D版本,其实U-Net作者自己也发表了3D U-Net[2]。

论文贡献:第一,3D图像分割end2ent模型(基于3D卷积),用于MRI前列腺容积医学图像分割。第二,新的目标函数,基于Dice coefficient。第三,数据扩充方法:random non-linear transformations和histogram matching。第四,加入残差学习提升收敛。

MRI技术问题应用解决,在MRI前列腺问题上:第一,不同scans之间较大的外观变异(灰度分布的变换和改变)。第二,主磁场不均匀性引起的伪影和畸变。

论文地址:https://ieeexplore.ieee.org/document/7785132/
代码地址:https://github.com/faustomilletari/VNet/blob/master/pyLayer.py
3D-Net :
https://github.com/junqiangchen/Unet2d
https://github.com/junqiangchen/VNet
https://github.com/junqiangchen/VNet3D

AttentionGatedVNet3D代码地址:
https://github.com/junqiangchen/AttentionGatedVNet3D

核心算法原理代码
在这里插入图片描述
目前在unet已经发展到unet+++了。相关设计可以参考原论文《UNET 3+: A FULL-SCALE CONNECTED UNET FOR MEDICAL IMAGE SEGMENTATION》
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值