由于时间不够简单描述,稍微补全。
Nassir Navab等人发表在IEEE 3D Vison上的论文V-Net,是U-Net[1]的3D版本,其实U-Net作者自己也发表了3D U-Net[2]。
论文贡献:第一,3D图像分割end2ent模型(基于3D卷积),用于MRI前列腺容积医学图像分割。第二,新的目标函数,基于Dice coefficient。第三,数据扩充方法:random non-linear transformations和histogram matching。第四,加入残差学习提升收敛。
MRI技术问题应用解决,在MRI前列腺问题上:第一,不同scans之间较大的外观变异(灰度分布的变换和改变)。第二,主磁场不均匀性引起的伪影和畸变。
论文地址:https://ieeexplore.ieee.org/document/7785132/
代码地址:https://github.com/faustomilletari/VNet/blob/master/pyLayer.py
3D-Net :
https://github.com/junqiangchen/Unet2d
https://github.com/junqiangchen/VNet
https://github.com/junqiangchen/VNet3D
AttentionGatedVNet3D代码地址:
https://github.com/junqiangchen/AttentionGatedVNet3D
核心算法原理代码
目前在unet已经发展到unet+++了。相关设计可以参考原论文《UNET 3+: A FULL-SCALE CONNECTED UNET FOR MEDICAL IMAGE SEGMENTATION》