Python随机数

Python随机数

random随机数

在导入random模块时,会在模块内部执行语句_inst = Random(),其中类Random为模块random内部定义的类。模块random提供的seedrandintchoice等函数为_inst实例的成员函数。

seed需为非负整数

numpy随机数

在导入numpy.random模块时,会在模块numpy.random.mtrand内部执行语句_rand: RandomState,其中类RandomState为模块numpy.random.mtrand内部定义的类。模块numpy.random提供的seedrandintchoice等函数为_rand实例的成员函数。

seed需为非负整数

cupy随机数

numpy随机数

torch随机数

在导入torch模块时,会在模块torch._C.__init__torch.cuda.__init__内部分别执行语句default_generator:Generatordefault_generators:Tuple[torch._C.Generator]=(),其中类Generator为模块torch._C.__init__内部定义的类。模块torch提供的seedmanual_seedinitial_seed等函数为default_generator实例的成员函数。模块torch.cuda提供的seedmanual_seedmanual_seed_all等函数会调用default_generators元组中对应实例的对应成员函数。

import os
import random
import numpy as np
import torch

# 为了禁止hash随机化,用于python中的某些hash操作
os.environ['PYTHONHASHSEED'] = str(seed)

# 为random设置随机种子
random.seed(seed)

# 为numpy设置随机种子
np.random.seed(seed)

# 为torch设置随机种子
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# if you are using multi-GPU.
torch.cuda.manual_seed_all(seed)
# cudnn中对卷积操作进行了优化,牺牲了精度来换取计算效率
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True

若seed为负整数,则值会被转为对应的64位无符号整数

tensorflow随机数

tf.random.set_seed用法_仁义礼智信达的博客-CSDN博客
tensorlow随机种子包括图级种子和操作级种子。图级种子使用tensorflow,random.set_seed()设置,操作级种子在声明随机变量时通过传入seed参数设置。

难以手动为tensorflow声明一个随机数生成器实例。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值