【Python入门可视化】:22个完整数据可视化小例子,带你玩转可视化~

总共22个完整的pyecharts例子,包含常用的配置方法,每个小例子都包含完整代码,为避免混淆,每个例子都差不多只包含单一配置的代码,更多有趣的源码分享可以在评论区回复。
在这里插入图片描述

1. 柱状图堆叠

不同系列的数据使用相同的stack值会堆叠在一起;

在这里插入图片描述

from pyecharts.charts import *
from pyecharts import options as opts
from pyecharts.faker import Faker


def bar_stack():
    bar = Bar(init_opts=opts.InitOpts(theme='light',
                                      width='1000px',
                                      height='600px'))
    bar.add_xaxis(Faker.choose())
    # stack值一样的系列会堆叠在一起
    bar.add_yaxis('A', Faker.values(), stack='stack1')
    bar.add_yaxis('B', Faker.values(), stack='stack1')
    bar.add_yaxis('C', Faker.values(), stack='stack2')
    return bar



chart = bar_stack()
chart.render_notebook()

2.关闭坐标轴显示

碰上类目标签过长的时候,可以选择关闭坐标轴,将数据&标签直接显示在图形中

在这里插入图片描述

from pyecharts.charts import *
from pyecharts import options as opts
from pyecharts.faker import Faker


def bar_with_axis_off():
    bar = Bar(init_opts=opts.InitOpts(theme='light',
                                      width='1000px',
                                      height='600px'))
    bar.add_xaxis(Faker.choose())
    bar.add_yaxis('', Faker.values())
    # 碰上类目标签过长的时候,可以选择关闭坐标轴,直接显示在图形中
    bar.set_series_opts(label_opts=opts.LabelOpts(position='insideLeft', formatter='{b}:{c}'))
    bar.set_global_opts(xaxis_opts=opts.AxisOpts(is_show=False),
                        yaxis_opts=opts.AxisOpts(is_show=False))
    bar.reversal_axis()
    return bar


chart = bar_with_axis_off()
chart.render_notebook()

在这里插入图片描述

3.更改坐标轴数据类型

x轴默认数据类型是使用离散型,在使用散点图的时候可调整为数值型
在这里插入图片描述

from pyecharts.charts import *
from pyecharts import options as opts
import random

x_data = [random.randint(0, 20) for _ in range(100)]
y_data = [random.randint(0, 50) for _ in range(100)]


def scatter_with_value_xaxis():
    scatter = Scatter(init_opts=opts.InitOpts(theme='light',
                                              width='1000px',
                                              height='600px'))
    scatter.add_xaxis(x_data)
    scatter.add_yaxis('', y_data)
    # X轴默认数据类型为离散数据,设置为数值型
    scatter.set_global_opts(xaxis_opts=opts.AxisOpts(type_="value"))
    return scatter

chart = scatter_with_value_xaxis()
chart.render_notebook()

4.双Y轴【直方图&折线图】

实际是Bar和Line两个图表共用同一套坐标体系,将Bar和Line分别指向不同的Y轴
在这里插入图片描述

from pyecharts.charts import *
from pyecharts import options as opts
import random

x_data = ['香蕉', '梨子', '水蜜桃', '核桃', '西瓜', '苹果']
y_data_1 = [random.randint(10, 50) for _ in range(len(x_data))]
y_data_2 = [random.randint(100, 500) for _ in range(len(x_data))]


def bar_line_combine_with_two_axis():
    bar = Bar(init_opts=opts.InitOpts(theme='light',
                                      width='1000px',
                                      height='600px'))
    bar.add_xaxis(x_data)
    # 添加一个Y轴
    bar.extend_axis(yaxis=opts.AxisOpts())
    bar.add_yaxis('左边Y轴', y_data_1, yaxis_index=0)

    line = Line(init_opts=opts.InitOpts(theme='light',
                                        width='1000px',
                                        height='600px'))
    line.add_xaxis(x_data)
    # 将line数据通过yaxis_index指向后添加的Y轴
    line.add_yaxis('右边Y轴', y_data_2, yaxis_index=1)

    bar.overlap(line)
    return bar


chart = bar_line_combine_with_two_axis()
chart.render_notebook()

在这里插入图片描述

5.直方图——双Y轴

在这里插入图片描述

from pyecharts.charts import *
from pyecharts import options as opts
import random

x_data = ['香蕉', '梨子', '水蜜桃', '核桃', '西瓜', '苹果']
y_data_1 = [random.randint(10, 50) for _ in
评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yunyun云芸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值