emacs打开git仓库下多个子工程的根目录问题解决案

文章讲述了如何在emacs中解决在一个包含多个子工程的git仓库中,emacs无法正确识别子工程根目录的问题。作者通过研究projectile.el插件的源码,发现可以添加.yu文件作为项目根目录的标识,并通过配置`projectile-project-root-files-bottom-up`来解决这个问题。这样,无论是treemacs还是其他语言的工具,都能正确识别子目录为项目根。
摘要由CSDN通过智能技术生成

emacs打开git仓库下多个子工程的根目录问题解决案

问题描述

如题所述,这个问题困扰我很久了,一直没搜到完整的解决方案。这次终于乘着空闲时间,研究了projectile.el源码找到了方案。

问题场景具体描述下:

我自己有一个私人git仓库,这个git仓库有多个不同的代码工程,因为只有我一个人维护提交,所以不想分出很多git仓库,都是统一提交和更新的。 在这样的背景下,我在对应子目录下打开对应代码工程:就会出现emacs不会把当前目录作为根目录,而是会把最上层.git的目录做为主目录(比如图片的yumore)。 不管是treemacs还是比如go语言的gopls报错,都是因为定位到了.git对应的主目录(yumore)。

见图
在这里插入图片描述

以前通过些小技巧,能绕过去。

解决方案

最终经过分析和猜测定位到了projectile这个插件。

我通过在子工程加了一个.yu文件做为通用的标记当前目录是根目录
具体配置:

(use-package projectile                                                                                                                               
  :ensure t                                                                                                                                           
  :bind (("C-c p" . projectile-command-map))                                                                                                          
  :config                                                                                                                                             
  (add-to-list 'projectile-project-root-files-bottom-up ".yu")
)
(projectile-project-info)

关键代码1: (add-to-list 'projectile-project-root-files-bottom-up “.yu”)
关键代码2: (projectile-project-info)

效果见图
在这里插入图片描述

最后

分享记录,enjoy!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

余很多之很多

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值