[排序] 快速排序(Python)

思想

快速排序(快排)是非常常用的排序方法,在技术面试中出现频率也特别高。它主要采用交换和分治的策略进行排序。是不稳定排序。
步骤:
1、在序列中选一个元素作为划分的基准元素(pivot)
2、将所有不大于pivot的数字放在pivot的前面,大于pivot的数字放在pivot的后面
3、以pivot为界,对前后两个子序列分别递归重复前两步,直至区间内只有一个元素

示例

对序列 [2, 4, 7, 3, 6, 5] 按升序排列,取倒数第一个元素为pivot,tail表示不大于pivot的序列的最后一个数的下标,所以最后基准元素的下标为tail + 1

pivottail排序过程
5-1[2, 4, 7, 3, 6, 5]
50[2, 4, 7, 3, 6, 5]
51[2, 4, 7, 3, 6, 5]
51[2, 4, 7, 3, 6, 5]
52[2, 4, 7, 3, 6, 5] -> [2, 4, 3, 7, 6, 5]
52[2, 4, 3, 7, 6, 5]
52[2, 4, 3, 5, 6, 7] (交换下标为tail+1的元素和pivot)

至此,前后两个子序列划分完毕,下面继续对子序列进行排序

pivottail排序过程
3-1[2, 4, 3]
30[2, 4, 3]
30[2, 4, 3]
30[2, 3, 4] (交换下标为tail+1的元素和pivot)
pivottail排序过程
7-1[6, 7]
70[6, 7]
70[6, 7] (交换下标为tail+1的元素和pivot)

代码

class Solution:
    # @param {int[]} A an integer array
    # @return nothing
    def sortIntegers2(self, A):
        # Write your code here
        if A is None or len(A) <= 1:
            return
        s = 0
        e = len(A) - 1
        self.quickSort(A, s, e)

    def quickSort(self, A, s, e):
        if s < e:
            # 基准元素下标
            pivot_ind = self.partition(A, s, e)
            self.quickSort(A, s, pivot_ind - 1)
            self.quickSort(A, pivot_ind + 1, e)

    def partition(self, A, s, e):
        # 选取倒数第一个元素为基准元素
        pivot = A[e]
        # tail表示不大于pivot的序列的最后一个数的下标,所以最后基准元素的下标为tail + 1
        tail = s - 1
        for i in range(s, e):
            if A[i] <= pivot:
                tail += 1
                self.swap(A, i, tail)
        self.swap(A, tail + 1, e)
        return tail + 1

    def swap(self, A, i, j):
        if i != j:
            tmp = A[i]
            A[i] = A[j]
            A[j]= tmp

选取第一个元素为基准元素

def partition(self, A, s, e):
        # 选取第一个元素为基准元素
        pivot = A[s]
        # tail表示不小于pivot的序列的第一个数的下标,所以最后基准元素的下标为tail - 1
        tail = e+1
        for i in range(e, s,-1):
            if A[i] >= pivot:
                tail -= 1
                self.swap(A, i, tail)
        self.swap(A, tail - 1 , s)
        return tail - 1

时间复杂度

快排的时间复杂度比较稳定,为 O(nlogn)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值