C - GCD(因子分解+欧拉函数)

传送阵:NEFU2022-Euler's totient function - Virtual Judge

思路:

枚举因子i(1,n),对于每个因子i(i>=m),求有多少个x(1,n)使得gcd(x,n)=i

gcd(x,n)=i <=> gcd(x/i,n/i)=1 <=> 求n/i的欧拉函数的值。

代码:

#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<math.h>
#include<map>
using namespace std;
typedef long long LL;
typedef unsigned long long ull;
#define per(i,a,b) for(int i=a;i<=b;i++)
#define ber(i,a,b) for(int i=a;i>=b;i--)
const int N = 1e5 + 3;
const long long mod = 10000000033;
LL n, m;
LL phi(LL x)
{
    if (x == 1)
        return 1;
    LL ans = x;
    for (int i = 2; i * i <= x; i++)
    {
        if (x % i == 0)
            ans = ans / i * (i - 1);
        while (x % i == 0)
            x /= i;
    }
    if (x > 1)
        ans = ans / x * (x - 1);
    return ans;
}
int main()
{
    ios::sync_with_stdio(false);
    int T;
    cin >> T;
    while (T--)
    {
        LL ans = 0;
        cin >> n >> m;
        if (m == 1)
        {
            cout << n << endl;
            continue;
        }
        for (int i = 1; i * i <= n; i++)
        {
            if (n % i == 0)
            {
                if (n / i >= m)  ans += phi(i);
                if (i >= m && i * i != n) ans += phi(n / i);//防止i*i==n时算两遍
            }
        }
        cout << ans << endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值