k8s——yaml资源清单

yaml文件详解

1.Kubernetes支持YAML和JSON格式管理资源对象
2.JSON格式:主要用于api接口之间消息的传递
3.YAML格式:用于配置和管理,YAML是一种简洁的非标记性语言,内容格式人性化,较易读

YAML语法格式

1.大小写敏感
2.使用缩进表示层级关系
3.不支持Tab键制表符缩进,只使用空格缩进
4.缩进的空格数目不重要,只要相同层级的元素左侧对齐即可,通常开头缩进两个空格
5.:字符后缩进一个空格,如冒号,逗号,短横杆(-)等
6."—"表示YAML格式,一个文件的开始,用于分隔文件间
7.“#"表示注释

查看api资源版本标签

kubectl api-versions
==========================================================
apps/v1
#如果是业务场景一般首选使用apps/v1
apps/v1beta1
#带有beta字样的代表的是测试版本,不用在生产环境中
==========================================================

img

编写yaml文件demo

编写nginx-deployment的清单文件

mkdir /opt/demo/
cd /opt/demo/
==========================================================
vim nginx-deployment.yaml
apiVersion: apps/v1   #指定api版本标签
kind: Deployment   #定义资源的类型/角色,deployment为副本控制器,此处资源类型可以是Deployment、Job、Ingress、Service等
metadata:   #定义资源的元数据信息,比如资源的名称、namespace、标签等信息
  name: nginx-deployment   #定义资源的名称,在同一个namespace空间中必须是唯一的
  namespace: kube-public   #定义命名空间
  labels:          #定义资源标签(Pod的标签)
    app: nginx
spec:        #定义deployment资源需要的参数属性,诸如是否在容器失败时重新启动容器的属性
 replicas: 3     #定义副本数量
 selector :      #定义标签选择器
  matchLabels:   #定义匹配标签
    app: nginx-111   #匹配下面的标签,需与.spec.template.metadata.labels定义的标签一致
 template:        #定义业务模板,如果有多个副本,所有副本的属性会按照模板的相关配置进行匹配
  metadata:
    labels:       #定义pod副本将使用的标签,需与.spec.selector.matchLabels定义的标签保持一致
      app: nginx-111
  spec:
   containers:            #定义容器属性
   - name: nginx          #定义一个容器名,一个- name: 定义一个容器
    image: nginx:1.15   #定义容器使用的镜像以及版本
    ports:
    - containerPort: 80   #定义容器的对外的端口
=========================================================
#创建资源对象
kubectl apply -f nginx-deployment.yaml 
#查看创建的pod资源
kubectl get pods -o wide -n kube-public --show-labels

img
img

编写service服务的资源清单

vim nginx-service.yaml
apiVersion: v1
kind: Service
metadata :
  name: nginx-service
  namespace: kube-public
  labels:
    app: sb 
spec:
  type: NodePort
  ports :
  - port: 7777
   targetPort: 80
   nodePort: 31111
  selector :
   app: nginx-111 
==========================================================
#创建资源对象
kubectl create -f nginx-service.yaml
#查看创建的service
kubectl get pods,svc -o wide -n kube-public --show-labels
#在浏览器输入nodeIP:nodePort即可访问
http://192.168.80.11:31111
http://192.168.80.12:31111
==========================================================
详解k8s中的port:
●port
port是k8s集群内部访问service的端口,即通过clusterIP: port可以从Pod所在的Node. 上访问到service 
●nodePort
nodePort是外部访问k8s集群中service的端口,通过nodeIP: nodePort 可以从外部访问到某个service。
●targetPort
targetPort是Pod的端口,从port或nodePort来的流量经过kube-proxy 反向代理负载均衡转发到后端Pod的targetPort上,最后进入容器。
●containerPort
containerPort是Pod内部容器的端口,targetPort映射到containerPort

img
img
img
img

用–dry-run命令生成yaml资源清单

//kubectl run --dry-run 打印相应的API对象而不执行创建
kubectl run nginx-test --image=nginx --port=80 --replicas=3 --dry-run

//查看生成yaml格式
kubectl run nginx-test --image=nginx --port=80 --replicas=3 --dry-run -o yaml

//查看生成json格式
kubectl run nginx-test --image=nginx --port=80 --replicas=3 --dry-run -o json 

//使用yaml格式导出生成模板,并进行修改以及删除一些不必要的参数
kubectl run nginx-test --image=nginx --port=80 --replicas=3 --dry-run -o yaml > nginx-test.yaml
==========================================================
vim nginx-test.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    run: nginx-test
  name: nginx-test
spec:
  replicas: 3
  selector:
    matchLabels:
      run: nginx-test
  template:
    metadata:
      labels:
        run: nginx-test
    spec:
      containers:
      - image: nginx
        name: nginx-test
        ports:
        - containerPort: 80
==========================================================
//创建资源对象
kubectl create -f nginx-test.yaml
#查看创建的service
kubectl get pods -o wide --show-labels

img
img
img
img

将现有的资源生成模板导出生成yaml文件

//将现有的资源生成模板导出I
kubectl get deployment nginx-test --export -o yaml

//保存到文件中
kubectl get deployment nginx-test --export -o yaml > gxd.yaml
==========================================================
vim gxd.yaml
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  labels:
    run: nginx-123
  name: nginx-456
spec:
  replicas: 3
  selector:
    matchLabels:
      run: nginx-gxd
  template:
    metadata:
      labels:
        run: nginx-gxd
    spec:
      containers:
      - image: nginx
        name: nginx-789
        ports:
        - containerPort: 80
          protocol: TCP
==========================================================
//创建资源对象
kubectl create -f gxd.yaml
#查看创建的service
kubectl get pods -o wide --show-labels

img
img
img
img

### 在 Kubernetes 上部署配置 Ollama #### 安装 K3s 并设置 GPU 支持 为了在 Kubernetes (k8s) 中成功部署 AI 大模型 Ollama 并启用 GPU 加速,首先需要创建一个支持 GPU 的单节点 Kubernetes 集群。这可以通过安装 K3s 和 NVIDIA GPU Operator 实现。 启动实例后,通过 SSH 连接至该实例,并执行如下命令来安装 K3s: ```bash curl -sfL https://get.k3s.io | K3S_KUBECONFIG_MODE=644 sh -s - --default-runtime=nvidia ``` 此命令会下载并安装 K3s,在安装过程中指定默认容器运行时为 `nvidia` 以确保后续可以利用 GPU 资源[^1]。 确认集群已正常工作,可通过以下命令查看节点状态: ```bash k3s kubectl get nodes ``` 当看到输出显示至少有一个 Ready 状态的节点,则表示集群已经准备好继续下一步操作。 #### 安装 NVIDIA GPU Operator 为了让 Kubernetes 可识别和管理 GPU 设备,还需要安装 NVIDIA GPU Operator。这个组件负责自动完成必要的驱动程序和其他依赖项的安装。按照官方文档指导进行安装即可。 #### 创建 Ollama Deployment 文件 接下来定义用于部署 Ollama 应用的服务资源清单文件(YAML),其中应包含有关镜像版本、环境变量以及资源配置的信息。下面是一个简单的例子: ```yaml apiVersion: apps/v1 kind: Deployment metadata: name: ollama-deployment spec: replicas: 1 selector: matchLabels: app: ollama template: metadata: labels: app: ollama spec: containers: - name: ollama-container image: your-docker-repo/ollama:latest resources: limits: nvidia.com/gpu: 1 # 根据实际情况调整数量 ports: - containerPort: 8080 --- apiVersion: v1 kind: Service metadata: name: ollama-service spec: type: LoadBalancer selector: app: ollama ports: - protocol: TCP port: 80 targetPort: 8080 ``` 上述 YAML 文件描述了一个名为 `ollama-deployment` 的 Pod 组合及其关联的服务 `ollama-service`。这里假设应用程序监听端口 8080,并且每台机器最多分配一块 GPU 给应用使用。实际环境中可能需要根据具体需求修改这些参数[^2]。 最后一步就是将编写好的 YAML 文件应用于当前上下文中所指向的目标集群: ```bash kubectl apply -f path/to/deploy.yaml ``` 这样便完成了整个流程——从初始化到最终使能 GPU 加速下的 Ollama 模型服务部署过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值