1、数据来源:基于上市公司数据整理计算
2、时间跨度:2011-2020年
3、区域范围:沪深A股上市公司
4、指标说明:通过匹配2011—2020年北京大学数字普惠金融指数与非金融上市公司数据来验证数字普惠金融与企业创新之间的关系。构建高管团队异质性指标,并讨论其在驱动企业创新过程中发挥的作用机制。
选取2011—2020年沪深A股非金融上市公司作为研究样本。其中,高管团队异质性涉及年龄、性别、教育、职业背景等多个维度,数据来自 Wind 数据库、历年的上市公司年报以及高管简历。数字金融发展水平采用的是由北京大学数字金融研究中心编制的数字普惠金融发展指数。衡量企业创新指标的专利数据来源于国泰安数据库。可以看到,本文对微观层面的上市公司数据和宏观层面的数字金融指数进行合并,所以在一定程度上可以缓解部分内生性问题。借鉴顾夏铭等(2018)[14]的做法,本文对原始样本进行了如下处理:
(1)由于金融保险类的企业监管制度和报表结构和其他种类的行业相差甚远,因此需要剔除金融保险类行业的企业;(2)因ST企业的财务和交易机制出现异常情况,故需要剔除*ST、ST的样本企业;(3)剔除文章主要变量数据缺失的样本企业;(4)剔除资不抵债的样本企业(资产负债率大于1)。此外,为防止异常值对实证模型的回归有影响,本文对所有涉及的连续变量均做了Winsor缩尾处理。实证部分采用Stata 15.0软件对筛选后的企业进行回归分析dta数据格式
参考文献:
[1]李秀萍,付兵涛,郭进.数字金融、高管团队异质性与企业创新[J].统计与决策,2022,38(07):161-165.
(完整资料数据的压缩包请在文件下载资源频道搜索 与本标题相同的 本博主提供的材料)