数字金融高管团队异质性与上市公司企业创新匹配2011-2020含数据及参考文献

本文通过2011-2020年沪深A股非金融上市公司的数据,研究数字普惠金融指数与高管团队异质性如何影响企业创新。剔除了金融保险类、ST企业和数据缺失的企业,使用Stata15.0进行回归分析,旨在探讨两者间的关系及作用机制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、数据来源:基于上市公司数据整理计算

2、时间跨度:2011-2020年

3、区域范围:沪深A股上市公司

4、指标说明:通过匹配2011—2020年北京大学数字普惠金融指数与非金融上市公司数据来验证数字普惠金融与企业创新之间的关系。构建高管团队异质性指标,并讨论其在驱动企业创新过程中发挥的作用机制。


选取2011—2020年沪深A股非金融上市公司作为研究样本。其中,高管团队异质性涉及年龄、性别、教育、职业背景等多个维度,数据来自 Wind 数据库、历年的上市公司年报以及高管简历。数字金融发展水平采用的是由北京大学数字金融研究中心编制的数字普惠金融发展指数。衡量企业创新指标的专利数据来源于国泰安数据库。可以看到,本文对微观层面的上市公司数据和宏观层面的数字金融指数进行合并,所以在一定程度上可以缓解部分内生性问题。借鉴顾夏铭等(2018)[14]的做法,本文对原始样本进行了如下处理:

(1)由于金融保险类的企业监管制度和报表结构和其他种类的行业相差甚远,因此需要剔除金融保险类行业的企业;(2)因ST企业的财务和交易机制出现异常情况,故需要剔除*ST、ST的样本企业;(3)剔除文章主要变量数据缺失的样本企业;(4)剔除资不抵债的样本企业(资产负债率大于1)。此外,为防止异常值对实证模型的回归有影响,本文对所有涉及的连续变量均做了Winsor缩尾处理。实证部分采用Stata 15.0软件对筛选后的企业进行回归分析dta数据格式


b01c0cce33a5130e1a0e9255b92056c.png


 

参考文献:

[1]李秀萍,付兵涛,郭进.数字金融、高管团队异质性与企业创新[J].统计与决策,2022,38(07):161-165.

(完整资料数据的压缩包请在文件下载资源频道搜索 与本标题相同的 本博主提供的材料)
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

用数据说话用数据决策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值