上市公司企业ESG表现与短债长用验证2009-2021资产负债率回报率经营性现金流固定资产比重
提供验证数据、计算代码、参考文献
数据来源:基于上市公司公告、年报数据整理计算
数据期间:2009-2021
数据范围:沪深上市公司A股
主要指标:
S YEAR 证券代码 综合评级 综合得分 SFLI_刘晓光 ESG SIZE BOARD LEV ROA GROWTH 经营活动产生的现金流量净额 总资产(企业规模) CF FA TOP1 Q INDR AGE 固定资产净额 员工人数 CI MH DUAL SOE ANA INS INDUSTRY 所属省份 SFLI_刘晓光 ESG SIZE BOARD LEV ROA GROWTH CF FA TOP1 Q INDR AGE CI MH DUAL SOE ANA INS E S G Z值 SA指数 ESG评级 商道融绿ESG综合评级 赋值 SFLIDUM meansfli ESGDUM sflidum 盈利波动性pre 盈利波动性post MEDIANROAPOST ROAPOSTDUM MEDIANFA FADUM 市场化总指数 MEDIAN市场化总指数 市场化总指数DUM meanesg1 meanesg2 INDUSTRY MEANESG0 MISLA 非流动资产 所有者权益合计 长期负债合计 MISLA ZESG SDLAESG RISKO 盈利波动性2 盈利波动性3 RISKROA2 RISKROA3 O-Score O-Score LOScore LROA LLEV_IND Residuals LF_MEDIAN LFDUM LLEV_IND1 LLEV_IND INDUSTRY ESGFV 持股数量 ESGQ 资产总计 负债合计 重述 ESG重述 流动负债合计 MAT 非流动负债合计 LLEV 托宾Q值A 托宾Q值A L托宾Q值 Inveffi Over_INV OVERESG 短期投资持股比例 长期投资持股比例 LONGESG SHORTESG 短期借款 SLEV SLEV DA2 ABSDA2 ESGABSDA2 DA1 ABSDA1 ESGABSDA1 ESGMEAN diff ESGMEAN1 ESGMEAN2 diff2
企业ESG表现与短债长用
研究背景
ESG(Environmental,Social and Governance)被广泛认为是重要的非财务信息,也是当前国际用于衡量企业可持续发展的关键指标。自从1992年联合国环境规划署金融倡议(UNEP FI)提出建议将金融机构将环境、社会和治理(ESG)问题纳入其投资决策过程以来,ESG已经受到了各国政府和投资者的普遍关注。为了鼓励上市公司增加ESG信息披露并提高其ESG表现,近年来,中国政府监管部门和行业协会也推出了一系列措施,对企业的ESG披露进行规范和要求,并对投资者践行ESG投资理念进行引导。2022年4月,证监会发布《上市公司投资者关系管理工作指引》,将ESG信息作为投资者关系管理中上市公司与投资者沟通的内容之一。投资决策中将ESG纳入考虑不仅是从微观层面解决全球性社会问题的必要举措,也是实现经济高质量发展的有效手段。
近年来ESG在中国发展迅速,学者们从诸多方面进行了积极探索。大多文献集中在ESG对企业投融资行为及绩效和价值的影响。从理论上来说,ESG能够通过影响信息传递,降低银企之间的信息不对称提高了长期贷款的占比;其向外传递了企业经营目标的长期导向,也吸引了长期机构投资者的持股,从债权和股权两个方面都增加企业长期资金供给比例;良好的ESG表现助于抑制管理层自利性行为和促使投资决策更具有科学性,减少过度投资,从而降低了企业长期资金的需求。因此,良好的ESG表现有助于缓解当前企业普遍存在的短债长用的投融资错配现象,降低潜在的系统性金融风险。但目前对ESG表现能否增加企业长期债务占比,降低企业短债长用程度,缺乏文献进行研究。
本文对于企业ESG影响短债长用现象的关注不仅在于ESG是可持续发展背景下的新热点,还来自于中国对于企业普遍存在短期债务比例长期高于短期资产比例、长期债务比例持续低于长期资产比例的“短债长用”现象及其潜在的风险现阶段仍缺乏足够的重视。中国上市公司的短债长用程度从2000年到2019年均在23%以上,均值在27%以上,且中国企业的短期负债占总负债的比例高达90%,而在美国企业中却不足20%。企业为实现长期资产投资会不断叠加短期债务导致短债长用,由企业资金链中断导致违约所产生的不同类型的风险会蔓延到整个金融系统。这种期限错配已经逐渐成为中国各类系统性金融风险的根源。
主要发现
本研究以2009年至2021年中国A股上市公司为研究样本,探讨ESG表现对企业短债长用的降低作用及其作用机制。研究结果表明,企业ESG表现显著降低了企业短债长用程度。异质性分析发现,在风险偏好高、实体投资需求大、长期债务融资能力弱及信息不对称严重的样本中这一负向关系更为显著。作用机制检验表明,企业ESG表现能够提高企业长期负债和促进债务期限长期化、增进长期机构投资者持股、降低企业过度投资,从而缓解企业短债长用程度。企业ESG表现通过降低企业短债长用程度促进了企业业绩的提升、降低了企业的破产风险。
政策启示
第一,政府监管部门应改善营商环境,出台优惠政策,从而促进企业实体投资,增加企业实体投资需求。本文研究显示,在实体投资需求大的企业,其ESG表现更能发挥对短债长用的降低作用。因此,政府需提高企业进行实体投资的意愿,增加企业实体投资需求,充分发挥ESG对金融市场稳定的促进作用。一方面,应改善营商环境,规范资本市场发展。政府应为实体企业塑造良好的营商环境,减小实体经济和虚拟经济间收益的差距。由于虚拟经济的利润往往高于实体经济,导致当前中国非金融实体企业忽视原本的主营业务转而进入金融投资领域。中国大多数实体企业的主营业务和金融领域交叉较少,对于这些企业来说进行金融投资是一种跨行业的逐利行为。中国实体企业通过主营业务所获得的收益较少,而相比之下金融领域却表现出较高的盈利水平,两者的利润差导致了实体企业将重心转移到金融投资上。因此,为了减少企业过度进行金融投资、忽视实体投资的行为,政府需加强对上市公司的监督,出台相应政策制度约束企业的投机套利行为;同时督促上市公司加强内部治理并强化风险管理,避免过度投资于高风险领域。另一方面,应出台优惠政策,减轻企业负担。既要出台针对实体企业的优惠政策,如减轻税收负担、增加融资支持等政策减轻企业负担,还需保障已出台的优惠政策落到实处,推动企业成本实质性下降。这样不仅可以让企业具备更多的资源进行实体投资,提高实体投资意愿,也可以提高企业的创新能力,为其带来更多盈利,促进“稳金融”工作的实现。
第二,政府监管部门应提高ESG披露水平,促进投资者将ESG纳入考量,强化ESG的信号作用。ESG现在已经可以成为一种有效的信号,引导资本市场将资源配置到环境(E)、社会责任(S)、公司治理(G)绩效更高的企业。本文的研究结论表明,ESG表现良好的企业更容易获取更多长期融资机会,降低短债长用程度,与此同时还能够提升企业业绩与降低企业破产风险,有助于实现“稳金融”工作、促进经济高质量发展。因此,政府应提高企业的ESG信息披露水平,强化ESG引导市场上投资者投资的信号作用,充分发挥ESG表现对金融市场的积极效用。一方面,政府应给予政策激励促使企业积极披露ESG信息,同时通过媒体宣传ESG能够给企业带来的正面效果,推动企业加强ESG建设、主动披露ESG并提高披露质量;另一方面,加强对ESG信息披露的监管力度,提高ESG信息披露质量,使得资本市场投资者更为认可ESG评级,在投资决策过程中更多地将ESG纳入考量,强化ESG的信号作用,进而加强ESG表现“稳金融”的功能。此外,还应将政策扶持对象更多地向非国有企业倾斜。由于国有企业往往更加成熟,并持有的国家资本可以为其提供“隐性担保”;而非国有企业虽具有更高的增长潜力,但往往面临更大的风险,这使得银行偏好为国有企业提供贷款。同时,本文研究显示相较于国有企业,非国有企业ESG表现对短债长用的降低作用更为显著。因此,向非国有企业提供ESG政策倾斜,有助于非国有企业缓解长期融资约束,更充分地发挥企业ESG表现对短债长用的降低作用。
第三,企业应强化ESG理念,重视ESG建设。企业应贯彻ESG理念,重视ESG建设,以此增强企业获取长期资源的能力,促进可持续发展的实现。ESG表现在减少信息不对称方面发挥着重要作用,企业加强ESG管理有助于提高企业长期负债、促进债务期限长期化,增进长期机构投资者持股,从而缓解企业短债长用程度,为公司的可持续发展奠定基础。
附录1企业ESG表现影响短债长用的事实特征
附图(a)ESG分组下的短债长用均值
注:纵轴表示短债长用平均值;横轴表示华证ESG评分从低到高四等分为四组(其中组1为最低)。
附图(b)企业ESG表现与短债长用案例
注:纵轴表示短债长用数值;横轴表示年份。
附录2 稳健性检验
附表1 替换解释变量
变量 | (1) | (2) | (3) | (4) |
SDLA | SLEV | SDLA | SLEV | |
华证ESG 评级 | -0.007*** | -0.002** | ||
(0.002) | (0.001) | |||
商道融绿ESG | -0.011** | -0.002* | ||
(0.005) | (0.001) | |||
控制变量 | 是 | 是 | 是 | 是 |
企业固定效应 | 是 | 是 | 是 | 是 |
年份固定效应 | 是 | 是 | 是 | 是 |
行业固定效应 | 是 | 是 | 是 | 是 |
样本量 | 29919 | 29867 | 3142 | 3142 |
R2值 | 0.629 | 0.724 | 0.788 | 0.841 |
注:同表3。
附表2 内生性问题
变量 | (1) | (2) | (3) | (4) |
SDLA | SLEV | SDLA | SLEV | |
ESG | -5.750*** | -1.582*** | -0.135*** | -0.024* |
(1.481) | (0.466) | (0.035) | (0.015) | |
IMR | 0.014* | 0.010*** | ||
(0.007) | (0.003) | |||
控制变量 | 是 | 是 | 是 | 是 |
企业固定效应 | 是 | 是 | 是 | 是 |
年份固定效应 | 是 | 是 | 是 | 是 |
行业固定效应 | 是 | 是 | 是 | 是 |
第一阶段F值 | 10.758 | 10.571 | ||
样本量 | 29919 | 29919 | 25996 | 25950 |
R2值 | 0.642 | 0.734 |
注:同表3。
附表3 其他稳健性检验
变量 | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
SDLA 增加控制变量 | SLEV 增加控制变量 | SDLA 剔除2009年样本 | SLEV 剔除2009年样本 | SDLA 在公司-年度层面聚类 | SLEV 在公司-年度层面聚类 | SDLA 增加省份固定效应 | SLEV 增加省份固定效应 | |
ESG | -0.145*** | -0.036*** | -0.149*** | -0.033** | -0.152*** | -0.033*** | -0.152*** | -0.033** |
(0.033) | (0.014) | (0.034) | (0.014) | (0.026) | (0.010) | (0.034) | (0.014) | |
Z | -0.000 | 0.000*** | ||||||
(-0.550) | (2.957) | |||||||
SA | -0.042 | -0.068*** | ||||||
(-1.200) | (-5.166) | |||||||
控制变量 | 是 | 是 | 是 | 是 | 是 | 是 | 是 | 是 |
企业固定效应 | 是 | 是 | 是 | 是 | 是 | 是 | 是 | 是 |
年份固定效应 | 是 | 是 | 是 | 是 | 是 | 是 | 是 | 是 |
行业固定效应 | 是 | 是 | 是 | 是 | 是 | 是 | 是 | 是 |
省份固定效应 | 否 | 否 | 否 | 否 | 否 | 否 | 是 | 是 |
样本量 | 28891 | 28847 | 28671 | 28622 | 29919 | 29867 | 29919 | 29867 |
R2值 | 0.641 | 0.745 | 0.633 | 0.732 | 0.630 | 0.725 | 0.629 | 0.724 |
注:同表3。
程序代码:
use "/Users/Desktop/ESGSDLA.dta", clear
*描述性统计
tabstat SDLA_w SLEV_w ESG_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w,s(N mean p50 sd min max) f(%12.3f) c(s)
*基准回归
reghdfe SDLA_w ESG_w ,a(S YEAR INDUSTRY) vce(cluster S)
est store H1
reghdfe SDLA_w ESG_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w,a(S YEAR INDUSTRY) vce(cluster S)
est store H2
esttab H* , b(%6.3f) t(3) nogap compress ///
star(* 0.1 ** 0.05 *** 0.01) ///
ar2 scalar(N) replace
drop _est*
reghdfe SLEV_w ESG_w ,a(S YEAR INDUSTRY) vce(cluster S)
est store H1
reghdfe SLEV_w ESG_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w,a(S YEAR INDUSTRY) vce(cluster S)
est store H2
esttab H* , b(%6.3f) t(3) nogap compress ///
star(* 0.1 ** 0.05 *** 0.01) ///
ar2 scalar(N) replace
drop _est*
*内生性
*IV
xtset S YEAR
ivreghdfe SDLA_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w (ESG_w= ESGFV ESGQ) , a(S YEAR INDUSTRY)
ivreghdfe SLEV_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w (ESG_w= ESGFV ESGQ) ,a(S YEAR INDUSTRY)
*前置一期
xtset S YEAR
reghdfe f.SDLA_w ESG_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w,a( S YEAR INDUSTRY ) vce(cluster S )
est store I1
esttab I* , b(%6.3f) t(3) nogap compress ///
star(* 0.1 ** 0.05 *** 0.01) ///
ar2 scalar(N) replace
drop _est*
xtset S YEAR
reghdfe f.SLEV_w ESG_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w,a( S YEAR INDUSTRY ) vce(cluster S )
est store I1
esttab I* , b(%6.3f) t(3) nogap compress ///
star(* 0.1 ** 0.05 *** 0.01) ///
ar2 scalar(N) replace
drop _est*
*稳健性
*替换核心变量
reghdfe SDLA_w ESG评级 SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w,a( S YEAR INDUSTRY) vce(cluster S)
est store C1
reghdfe SLEV_w ESG评级 SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w,a( S YEAR INDUSTRY) vce(cluster S)
est store C2
reghdfe SDLA_w 商道融绿ESG SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w,a( S YEAR INDUSTRY) vce(cluster S)
est store C3
reghdfe SLEV_w 商道融绿ESG SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w,a( S YEAR INDUSTRY) vce(cluster S)
est store C4
esttab C* , b(%6.3f) t(3) nogap compress ///
star(* 0.1 ** 0.05 *** 0.01) ///
ar2 scalar(N) replace
drop _est*
*两阶段
xtset S YEAR
//encode (INDUSTRY),generate(industry)
probit ESGDUM L.SIZE_w L.LEV_w L.ROA_w L.GROWTH_w L.CF_w L.FA_w L.BOARD_w L.TOP1_w L.SOE_w L.MH_w ,nolog vce(cluster S)
est store first
predict y_hat, xb
gen imr = normalden(y_hat)/normal(y_hat)
reghdfe SDLA_w ESG_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w imr,a( S YEAR INDUSTRY) vce(cluster S)
est store second
esttab first second , b(%6.3f) t(3) nogap compress ///
star(* 0.1 ** 0.05 *** 0.01) ///
ar2 scalar(N) replace
drop _est*
drop imr y_hat
probit ESGDUM L.SIZE_w L.LEV_w L.ROA_w L.GROWTH_w L.CF_w L.FA_w L.BOARD_w L.TOP1_w L.SOE_w L.MH_w ,nolog vce(cluster S)
est store first
predict y_hat, xb
gen imr = normalden(y_hat)/normal(y_hat)
reghdfe SLEV_w ESG_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w imr,a( S YEAR INDUSTRY) vce(cluster S)
est store second
esttab first second , b(%6.3f) t(3) nogap compress ///
star(* 0.1 ** 0.05 *** 0.01) ///
ar2 scalar(N) replace
drop _est*
drop imr y_hat
*其他稳健性
reghdfe SDLA_w ESG_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w Z值 SA指数,a( S YEAR INDUSTRY ) vce(cluster S )
est store H1
reghdfe SLEV_w ESG_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w Z值 SA指数,a( S YEAR INDUSTRY ) vce(cluster S )
est store H2
esttab H* , b(%6.3f) t(3) nogap compress ///
star(* 0.1 ** 0.05 *** 0.01) ///
ar2 scalar(N) replace
drop _est*
drop if YEAR==2009
reghdfe SDLA_w ESG_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w,a( S YEAR INDUSTRY ) vce(cluster S )
est store H1
reghdfe SLEV_w ESG_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w,a( S YEAR INDUSTRY ) vce(cluster S )
est store H2
esttab H* , b(%6.3f) t(3) nogap compress ///
star(* 0.1 ** 0.05 *** 0.01) ///
ar2 scalar(N) replace
drop _est*
use "/Users/Desktop/ESGSDLA.dta", clear
reghdfe SDLA_w ESG_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w,a( S YEAR INDUSTRY ) vce(cluster S#YEAR)
est store Y1
reghdfe SLEV_w ESG_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w,a( S YEAR INDUSTRY ) vce(cluster S#YEAR)
est store Y2
reghdfe SDLA_w ESG_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w,a( S YEAR INDUSTRY 省份) vce(cluster S )
est store Y3
reghdfe SLEV_w ESG_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w,a( S YEAR INDUSTRY 省份) vce(cluster S )
est store Y4
esttab Y* , b(%6.3f) t(3) nogap compress ///
star(* 0.1 ** 0.05 *** 0.01) ///
ar2 scalar(N) replace
drop _est*
*异质性
reghdfe SDLA_w ESG_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w if ROAPOSTDUM==1,a( S YEAR INDUSTRY) vce(cluster S)
est store H1
reghdfe SDLA_w ESG_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w if ROAPOSTDUM==0,a( S YEAR INDUSTRY) vce(cluster S)
est store H2
esttab H* , b(%6.3f) t(3) nogap compress ///
star(* 0.1 ** 0.05 *** 0.01) ///
ar2 scalar(N) replace
drop _est*
set seed 0001
bdiff, group(ROAPOSTDUM) model (reghdfe SDLA_w ESG_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w ,a(S YEAR INDUSTRY) vce(cluster S)) bs reps(1000)
reghdfe SDLA_w ESG_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w if FADUM==1,a( S YEAR INDUSTRY) vce(cluster S)
est store H1
reghdfe SDLA_w ESG_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w if FADUM==0,a( S YEAR INDUSTRY) vce(cluster S)
est store H2
esttab H* , b(%6.3f) t(3) nogap compress ///
star(* 0.1 ** 0.05 *** 0.01) ///
ar2 scalar(N) replace
drop _est*
set seed 0001
bdiff, group(FADUM) model (reghdfe SDLA_w ESG_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w ,a(S YEAR INDUSTRY) vce(cluster S)) bs reps(1000)
reghdfe SDLA_w ESG_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w if LFDUM==1,a( S YEAR INDUSTRY) vce(cluster S)
est store H1
reghdfe SDLA_w ESG_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w if LFDUM==0,a( S YEAR INDUSTRY) vce(cluster S)
est store H2
esttab H* , b(%6.3f) t(3) nogap compress ///
star(* 0.1 ** 0.05 *** 0.01) ///
ar2 scalar(N) replace
drop _est*
set seed 0001
bdiff, group(LFDUM) model (reghdfe SDLA_w ESG_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w ,a(S YEAR INDUSTRY) ) bs reps(1000)
reghdfe SDLA_w ESG_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w if SOE==1,a( S YEAR INDUSTRY) vce(cluster S)
est store H1
reghdfe SDLA_w ESG_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w if SOE==0,a( S YEAR INDUSTRY) vce(cluster S)
est store H2
esttab H* , b(%6.3f) t(3) nogap compress ///
star(* 0.1 ** 0.05 *** 0.01) ///
ar2 scalar(N) replace
drop _est*
set seed 0001
bdiff, group(SOE) model (reghdfe SDLA_w ESG_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w ,a(S YEAR INDUSTRY) vce(cluster S)) bs reps(1000)
*作用机制
reghdfe SDLA_w ESGABSDA1 ABSDA1 ESG_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w,a(S YEAR INDUSTRY) vce(cluster S)
est store C1
reghdfe SDLA_w ESGABSDA2 ABSDA2 ESG_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w,a(S YEAR INDUSTRY) vce(cluster S)
est store C2
reghdfe SDLA_w ESG重述 重述 ESG_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w,a(S YEAR INDUSTRY) vce(cluster S)
est store C3
esttab C* , b(%6.3f) t(3) nogap compress ///
star(* 0.1 ** 0.05 *** 0.01) ///
ar2 scalar(N) replace
drop _est*
reghdfe SDLA_w LONGESG 长期投资持股比例 ESG_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w ,a( S YEAR INDUSTRY) vce(cluster S)
est store C1
reghdfe SDLA_w SHORTESG 短期投资持股比例 ESG_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w ,a( S YEAR INDUSTRY) vce(cluster S)
est store C2
reghdfe SDLA_w OVERESG Over_INV ESG_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w ,a( S YEAR INDUSTRY) vce(cluster S)
est store C3
esttab C* , b(%6.3f) t(3) nogap compress ///
star(* 0.1 ** 0.05 *** 0.01) ///
ar2 scalar(N) replace
drop _est*
*经济后果检验
xtset S YEAR
reghdfe ROA_w SDLAESG ESG_w SDLA_w SIZE_w LEV_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w ,a( S YEAR INDUSTRY) vce(cluster S)
est store Y1
reghdfe LROA SDLAESG ESG_w SDLA_w SIZE_w LEV_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w ,a( S YEAR INDUSTRY) vce(cluster S)
est store Y2
reghdfe 托宾Q值_w SDLAESG ESG_w SDLA_w SIZE_w LEV_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w ,a( S YEAR INDUSTRY) vce(cluster S)
est store Y3
reghdfe L托宾Q值 SDLAESG ESG_w SDLA_w SIZE_w LEV_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w ,a( S YEAR INDUSTRY) vce(cluster S)
est store Y4
esttab Y* , b(%6.3f) t(3) nogap compress ///
star(* 0.1 ** 0.05 *** 0.01) ///
ar2 scalar(N) replace
drop _est*
xtset S YEAR
reghdfe OScore_w SDLAESG ESG_w SDLA_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w ,a( S YEAR INDUSTRY) vce(cluster S)
est store H1
reghdfe LOScore SDLAESG ESG_w SDLA_w SIZE_w LEV_w ROA_w GROWTH_w CF_w FA_w BOARD_w TOP1_w SOE_w MH_w ,a( S YEAR INDUSTRY) vce(cluster S)
est store H2
esttab H* , b(%6.3f) t(3) nogap compress ///
star(* 0.1 ** 0.05 *** 0.01) ///
ar2 scalar(N) replace
drop _est*