In recent years, the utilization of machine learning methods in the field of meteorology has gained widespread attention as a research hotspot. This report delves into the similarities between machine learning problems and meteorological problems, and highlights our endeavors to leverage these similarities in areas like meteorological downscaling, image-based weather recognition, meteorological nowcasting, and short-term meteorological forecast. Our results showcase that the application of machine learning methods can yield impressive prediction and recognition results in meteorology, thereby providing significant support and guidance to the fields of meteorological forecasting and disaster prevention and mitigation. Finally, we discuss the future research, practical directions, and prospects for leveraging machine learning methods in meteorology.
近年来,机器学习方法在气象领域的利用引起了广泛关注,成为研究的热点。本报告深入探讨了机器学习问题与气象问题之间的相似性,并着重介绍了我们在气象降尺度、基于图像的天气识别、短临、短期气象要素预测等领域的探索。我们的结果表明,在气象学中应用机器学习方法可以产生令人印象深刻的预测和识别结果,从而为气象预测、灾害防治等领域提供重要的支持和指导。最后,我们讨论了在气象学中利用机器学习方法进行未来研究、实际应用方向和前景。