Pytorch如何自定义Loss

31 篇文章 1 订阅
20 篇文章 6 订阅

将Loss视作单独的层,在forward函数里写明loss的计算方式,无需定义backward
 

class MyLoss(nn.Module):
    def __init__(self):
        super(MyLoss, self).__init__()
        print '1'
    def forward(self, pred, truth):
        return  torch.mean(torch.mean((pred-truth)**2,1),0)


初始化函数一定要添加 

super(MyLoss, self).__init__()

 

否则出现 AttributeError: 'MyLoss' object has no attribute '_forward_pre_hooks' 错误。

 

要打印loss可以用

loss.data.cpu().numpy()[0]

访问。

如果考虑多个loss同时约束优化网络,可以参考这里,主要有两种方式,最简单且直白的方法即

loss1 = criterion(p1, y1)
loss2 = criterion(p1, y2)
loss  = loss1 + loss2
loss.backward()
optimizer.step()

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值