文章目录
1 模板
与定义一个模型类似,定义一个继承nn.Module的类:
__init__
:初始化超参数forward
:定义损失的计算方式,并进行前向传播backward
:反向传播(暂未遇到需要修改的情况)
import torch.nn as nn
import torch
class MyLoss(nn.Module):
def __init__(self):
# 超参数初始化,如
slef.param1 = 0
def forward(self, predict, label): # 一般是预测值和label
# 进行损失计算,即前向传播,如
return torch.mean(torch.pow((predict - label), 2)) # 可以自己定义一些计算,但是所有的数学操作必须使用tensor提供的math。也可以用functional提供的一些损失计算,如交叉熵损失。
下面介绍一些损失函数:
2 损失函数
损失函数分为两类:
- 分类损失,如0-1 loss、熵与交叉熵loss、softmax loss及其变种、KL散度、Hinge loss、Exponential loss、Logistic loss、Focal Loss。
- 回归损失,如L1 loss、L2 loss、perceptual loss、生成对抗网络损失、GAN的基本损失、-log D trick、Wasserstein GAN、LS-GAN、Loss-sensitive-GAN。
2.1 交叉熵损失
交叉熵损失函数一般用于分类任务,在计算的时候,期望输出和实际输出一般是one-hot形式(只有一个是真实值1,其余都是0)
2.1.1 原理
交叉熵主要是用来判定实际的输出与期望的输出的接近程度:
其中p为期望输出,q为实际输出。
假设期望输出为p=[1, 1, 0],实际输出q1=[0.4, 0.3, 0.3],q2=[0.6, 0.3, 0.1]:
可以看到q2和p的交叉熵更小,代表q2和p更加接近。
2.1.2 公式推导
假设有N条数据,out为网络输出,p为期望输出。
对于二分类问题:
首先我们先使用sigmod函数处理网络输出,限制其范围为0-1,结果为q,代表着实际输出:
对于一个样本i来说,在期望输出为pi的情况下,其正负样本的概率为:
假设所有样本相互独立,对应的似然函数为:
对似然函数取对数和相反数即为损失函数
2.1.3 扩展
交叉熵损失也可以应用到多分类问题,只是此时我们的网络输出out是一个one-hot变量,此时我们需要将out通过softmax函数,而不是sigmod。
假设网络输出N个样本,每个样本C个类别。一个样本的输出out(维度是1xC),其第i个数经过softmax计算如下:
该样本中其余数也经过这样计算。该样本的编码这样处理后所有值相加为0,然后取其中最大的一个作为。后面就与二分类问题一致了。
2.1.4 nn.CrossEntropyLoss
from torch.nn impiort CrossEntropyLoss # 导入
loss = CrossEntropyLoss() # 定义,后面去使用即可
还有一种办法是使用functional中的cross_entropy函数。
2.2 Focal Loss
Focal Loss以交叉熵损失为基础,引入主要是为了解决目标检测中正负样本数量极不平衡问题。
交叉熵函数如下:
两个式子合并到一起为:
由该函数得到的交叉熵损失函数无法解决正负样本的平衡问题。因此经过三个阶段形成了Focal Loss:
- 平衡交叉熵
- 聚焦损失
2.2.1 平衡交叉熵
一个普遍的解决正负样本的问题的办法是增加权重参数:,公式为:
样本t中,当为正样本y=1,负样本y=0。
结合了参数的交叉熵函数为:
2.2.2 聚焦损失
参数平衡了正负样本不均衡的问题。但是后面又发现难分样本的问题,为此,对于简单的样本增加一个小的权重,让损失函数聚焦在困难样本的训练。
设置这样一个调节因子:,其中。
结合该调节因子后,交叉熵函数如下:
当p为1,即为易区分样本时,接近0,即降低对易区分样本的损失比例。
2.2.3 Focal Loss
假设N个样本,最终的Focal Loss由上面CE(p. y)得到:
论文中提示时效果最好。
公式推导与2.1.2小结中一致
2.2.4 Code
def focal_loss(y, p, alpha=0.25, gamma=2):
p = K.clip(y_pred, 1e-8, 1 - 1e-8)
return - alpha * y * K.log(p) * (1 - p)**gamma - (1 - alpha) * (1 - y) * K.log(1 - p) * p**gamma
这里只是一个实现思路,配合着公式看,网络上也有通过pyotrch实现的Focal Loss。
3 代价函数、损失函数、目标函数
代价函数(Cost Function):指在整个数据集上衡量模型预测结果与真实结果之间差异的函数。代价函数通常用于监督学习问题中,用于评估模型的性能。代价函数的值越小,表示模型的预测结果与真实结果越接近。
损失函数(Loss Function):指衡量单个样本预测结果与真实结果之间差异的函数。损失函数通常用于监督学习问题中,用于衡量模型在单个样本上的预测误差。损失函数的值越小,表示模型在该样本上的预测结果越接近真实结果。
目标函数(Objective Function):是指在优化问题中需要最小化或最大化的函数。
- 目标函数可以是代价函数或损失函数的总和。例如,目标函数=经验风险(代价函数)+结构风险(Cost Function+正则化项)
- 也可以是在优化问题中需要优化的其他指标,其选择取决于具体的问题和优化目标。