数据结构经典习题 之 二叉排序树

本文探讨了如何判断一个二叉树是否为二叉排序树的问题,通过分析错误示例,强调了二叉排序树的定义,并提供了一个正确的C语言实现。算法基于中序遍历,通过维护前驱节点值来确保递增顺序,从而判断二叉树性质。
摘要由CSDN通过智能技术生成

设计一个算法 ,判断给定的二叉树是否为二叉排序树 ,假设二叉排序树已经存储在二叉链表存储结构中,树节点个数为n,节点值为int型。

(1)给出基本设计思想

(2)根据设计思想,采用c或c++语言描述算法,并在关键之处给出注释 。

(3)分析算法的时间复杂度和空间复杂度

 

这道题我第一次做的时候写的代码如下,

int judge(BNode  *bt)

{

if (bt==NULL)

return 1 ;

else {

if(bt->lchild->data<bt->data&&bt->rchild-data>bt->data){

return judge(bt->lchild)*judge(rchild);

}

return   0;

 

}

}

 

这段代码错误,,加入出现这样一种情况,也会认为是正确的。

                 35

        23                57

17             89

 

这个时候23的左子树小于它,他的右子树也大于它,但是他并不是一颗二叉排序树 ,

因为二叉树左子树所有的点都应该小于根,对于35来说,89属于它的左子树,但是89>35,不满足二叉树定义,所以我

(1)非递归定义 树(tree)是由n(n≥0)个结点组成的有限集合。n=0的树称为空树;n>0的树T: ① 有且仅有一个结点n0,它没有前驱结点,只有后继结点。n0称作树的根(root)结点。 ② 除结点外n0 , 其余的每一个结点都有且仅有一个直接前驱结点;有零个或多个直接后继结点。 (2)递归定义 一颗大树分成几个大的分枝,每个大分枝再分成几个小分枝,小分枝再分成更小的分枝,… ,每个分枝也都是一颗树,由此我们可以给出树的递归定义。 树(tree)是由n(n≥0)个结点组成的有限集合。n=0的树称为空树;n>0的树T: ① 有且仅有一个结点n0,它没有前驱结点,只有后继结点。n0称作树的根(root)结点。 ② 除根结点之外的其他结点分为m(m≥0)个互不相交的集合T0,T1,…,Tm-1,其中每个集合Ti(0≤i<m)本身又是一棵树,称为根的子树(subtree)。 2、掌握树的各种术语: (1) 父母、孩子与兄弟结点 (2) 度 (3) 结点层次、树的高度 (4) 边、路径 (5) 无序树、有序树 (6) 森林 3、二叉树的定义 二叉树(binary tree)是由n(n≥0)个结点组成的有限集合,此集合或者为空,或者由一个根结点加上两棵分别称为左、右子树的,互不相交的二叉树组成。 二叉树可以为空集,因此根可以有空的左子树或者右子树,亦或者左、右子树皆为空。 4、掌握二叉树的五个性质 5、二叉树的二叉链表存储。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值