poj1577 二叉排序树基础练习题

Falling Leaves

Time Limit: 1000MS

 

Memory Limit: 10000K

Total Submissions: 4011

 

Accepted: 2226

Description

 
Figure 1


Figure 1 shows a graphical representation of a binary tree of letters. People familiar with binary trees can skip over the definitions of a binary tree of letters, leaves of a binary tree, and a binary search tree of letters, and go right to The problem. 

A binary tree of letters may be one of two things: 

1. It may be empty. 

2. It may have a root node. A node has a letter as data and refers to a left and a right subtree. The left and right subtrees are also binary trees of letters.


In the graphical representation of a binary tree of letters: 

1. Empty trees are omitted completely. 

2. Each node is indicated by 

1. Its letter data, 

2. A line segment down to the left to the left subtree, if the left subtree is nonempty, 

3. A line segment down to the right to the right subtree, if the right subtree is nonempty.


A leaf in a binary tree is a node whose subtrees are both empty. In the example in Figure 1, this would be the five nodes with data B, D, H, P, and Y. 

The preorder traversal of a tree of letters satisfies the defining properties: 

1. If the tree is empty, then the preorder traversal is empty. 

2. If the tree is not empty, then the preorder traversal consists of the following, in order 

1. The data from the root node, 

2. The preorder traversal of the root's left subtree, 

3. The preorder traversal of the root's right subtree.


The preorder traversal of the tree in Figure 1 is KGCBDHQMPY. 

A tree like the one in Figure 1 is also a binary search tree of letters. A binary search tree of letters is a binary tree of letters in which each node satisfies: 

The root's data comes later in the alphabet than all the data in the nodes in the left subtree. 

The root's data comes earlier in the alphabet than all the data in the nodes in the right subtree. 

The problem: 

Consider the following sequence of operations on a binary search tree of letters 

Remove the leaves and list the data removed 
Repeat this procedure until the tree is empty 
Starting from the tree below on the left, we produce the sequence of trees shown, and then the empty tree 


by removing the leaves with data 

BDHPY 
CM 
GQ 


Your problem is to start with such a sequence of lines of leaves from a binary search tree of letters and output the preorder traversal of the tree.

Input

The input will contain one or more data sets. Each data set is a sequence of one or more lines of capital letters. 

The lines contain the leaves removed from a binary search tree in the stages described above. The letters on a line will be listed in increasing alphabetical order. Data sets are separated by a line containing only an asterisk ('*'). 

The last data set is followed by a line containing only a dollar sign ('$'). There are no blanks or empty lines in the input.

Output

For each input data set, there is a unique binary search tree that would produce the sequence of leaves. The output is a line containing only the preorder traversal of that tree, with no blanks.

Sample Input

BDHPYCMGQK*ACB$

Sample Output

KGCBDHQMPYBAC

Source

Mid-Central USA 2000

 

 

二叉排序树的基本操作,很适合做初学的练习题。

题意:从一棵二叉排序树上拔叶子,直到拔完,按拔下来的先后顺序把节点上的字母给你,让你将这棵树前序遍历输出。

 

//(C++  CE,G++ AC)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
using namespace std;
 
typedef struct Node node;
struct Node{
    char letter;
    node *lchild;
    node *rchild;
};
 
node *root=NULL;
 
void insert(node *c){
    //cout<<c->letter<<endl;
    node *x=root;
    node *y=NULL;
    while(x!=NULL){
        y=x;
        if(c->letter<x->letter)
            x=x->lchild;
        else
            x=x->rchild;
    }
 
    if(y==NULL){
        root=c;
    }
    else{
        if(c->letter<y->letter)
            y->lchild=c;
        else
            y->rchild=c;
    }
    return;
}
 
void preorder(node * x){
    if(x!=NULL){
        printf("%c",x->letter);
        preorder(x->lchild);
        preorder(x->rchild);
    }
    return;
}
 
int main(){
    string a[10000];
    int i,h;
    while(1){
        for(i=0;;i++){
            getline(cin,a[i]);
            if(a[i]=="*" || a[i]=="$")
                break;
        }
        root=NULL;
        h=i;
        i--;
        for(;i>=0;i--){
            for(int j=0;a[i][j]!='\0';j++){
                node *add=(node *)malloc(sizeof(node));
                add->letter=a[i][j];
                add->lchild=add->rchild=NULL;
                insert(add);
            }
        }
        preorder(root);
        printf("\n");
        
        if(a[h]=="*"){
            continue;
        }
 
        if(a[h]=="$"){
            break;
        }
        
    }
    return 0;
}
 


(1)非递归定义 树(tree)是由n(n≥0)个结点组成的有限集合。n=0的树称为空树;n>0的树T: ① 有且仅有一个结点n0,它没有前驱结点,只有后继结点。n0称作树的根(root)结点。 ② 除结点外n0 , 其余的每一个结点都有且仅有一个直接前驱结点;有零个或多个直接后继结点。 (2)递归定义 一颗大树分成几个大的分枝,每个大分枝再分成几个小分枝,小分枝再分成更小的分枝,… ,每个分枝也都是一颗树,由此我们可以给出树的递归定义。 树(tree)是由n(n≥0)个结点组成的有限集合。n=0的树称为空树;n>0的树T: ① 有且仅有一个结点n0,它没有前驱结点,只有后继结点。n0称作树的根(root)结点。 ② 除根结点之外的其他结点分为m(m≥0)个互不相交的集合T0,T1,…,Tm-1,其中每个集合Ti(0≤i<m)本身又是一棵树,称为根的子树(subtree)。 2、掌握树的各种术语: (1) 父母、孩子与兄弟结点 (2) 度 (3) 结点层次、树的高度 (4) 边、路径 (5) 无序树、有序树 (6) 森林 3、二叉树的定义 二叉树(binary tree)是由n(n≥0)个结点组成的有限集合,此集合或者为空,或者由一个根结点加上两棵分别称为左、右子树的,互不相交的二叉树组成。 二叉树可以为空集,因此根可以有空的左子树或者右子树,亦或者左、右子树皆为空。 4、掌握二叉树的五个性质 5、二叉树的二叉链表存储。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值