第二发~次方求模~

次方求模
时间限制:1000 ms | 内存限制:65535 KB
难度:3

描述
求a的b次方对c取余的值

输入:

 第一行输入一个整数n表示测试数据的组数(n<100)
 每组测试只有一行,其中有三个正整a,b,c(1<a,b,c<=1000000000)

输出:
输出a的b次方对c取余之后的结果

样例输入:

    3
    2 3 5
    3 100 10
    11 12345 12345

样例输出:

    3
    1
    10481

代码://自写~

#include<iostream>
#include<math.h>
using namespace std;

int main()
{
int i;
int a,b,c;
int n;
cin>>i;
while(i--)
{
    n=1;
    cin>>a>>b>>c;
    a=a%c;
    while(b>0)
    {
        if(b%2==1)
            n=((long long)n*a)%c;
        a=((long long)a*a)%c;
        b=b/2;
    }
    n=n%c;
    cout<<n<<endl;
}

return 0;
 } 

问题详细解题思路:
求a^b mod c

算法1.

首先直接地来设计这个算法:

int  ans=1, i;
for(i=1;i<=b;i++)
    ans*=a;
ans%=c;

这个算法的时间复杂度体现在for循环中,为O(b).

这个算法存在着明显的问题,如果a和b过大,很容易就会溢出。

那么,我们先来看看第一个改进方案:在讲这个方案之前,要先有这样一个公式:

a^b mod c=(a mod c)^b

引理:

(a * b) mod c =[ ( a mod c )* (b mod c) ] mod c ;

证明: 设 a mod c =d,b mod c= e;

   则:a=t*c + d ;  b=k*c + e ;

   (a*b)mod c = (t*c+d)(t*c+e)

             = (tk c^2 + ( te+dk ) *c + d*e) mod c

             =de mod c

即积的取余等于取余的积的取余.

(a ^ b)mod c 由上述公式迭代即可得到 ( a mod c)^b.

证明了以上的公式以后,我们可以先让a关于c取余,这样可以大大减少a的大小,于是不用思考的进行了改进:

算法2:

int ans = 1 , i ;  
 a = a % c; //加上这一句 
 for ( i = 1;i<=b;i++) 
     ans = ans * a;  
 ans = ans % c;  

既然某个因子取余之后相乘再取余保持余数不变,那么新算得的ans也可以进行取余,所以得到比较良好的改进版本。

算法3:

int  ans = 1 ,i ;  
a = a % c;
for(int i = 1;i<=b;i++) 
    ans = (ans * a) % c; //这里再取了一次余 
ans = ans % c; 

这个算法在时间复杂度上没有改进,仍为O(b),不过已经好很多的,但是在c过大的条件下,还是很有可能超时,所以,我们推出以下的快速幂算法。

快速幂取余依赖于以下公式:
这里写图片描述

那么我们可以得到以下算法:

算法4:

int  ans = 1 ,i ; 
a = a % c; 
if (b%2==1)  
ans = (ans * a) mod c; //如果是奇数,要多求一步, 
                    可以提前算到 ans 中。
k = (a*a) % c;  //我们取a^2 而不是a 
for( i = 1;i<=b/2;i++) 
    ans = (ans * k) % c;  
ans = ans % c;   

我们可以看到,我们把时间复杂度变成了O(b/2).

当然,这样子治标不治本。

但我们可以看到,当我们令k = (a * a) mod c时,状态已经发生了变化,我们所要求的最终结果即为 k^(b/2) mod c

而不是原来的a^b mod c,所以我们发现这个过程是可以迭代下去的。当然,对于奇数的情形会多出一项a mod c,所以为了完成迭代,当b是奇数时,我们通过 ans = (ans * a) % c;

来弥补多出来的这一项,此时剩余的部分就可以进行迭代了。

形如上式的迭代下去后,当b=0时,所有的因子都已经相乘,算法结束。

于是便可以在O(log b)的时间内完成了。

于是,有了最终的算法:快速幂算法。

算法5:快速幂算法

int ans = 1;
a = a % c; 
while(b>0) {   
    if(b % 2 == 1)  
        ans = (ans * a) % c; 
    b = b/2; 
    a = (a * a) % c;  
}  

将上述的代码结构化,也就是写成函数:

long long  PowerMod (int a, int b, int c) 
{  
    int  ans = 1; 
    a = a % c; 
    while(b>0) {  
        if(b % 2 = = 1) 
            ans = (ans * a) % c; 
        b = b/2;       //   b>>=1;
        a = (a * a) % c; 
    } 
    return ans; 
}  

本算法的时间复杂度为O(logb),能在几乎所有的程序设计(竞赛)过程中通过,是目前最常用的算法之一。

这种算法题~知道数学原理了就很好做了~加油~嘻嘻~我爱你刘仙~

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值