美团点评笔试--拼凑钱币

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/yuwenhao07/article/details/79639545

题目

给你六种面额 1、5、10、20、50、100 元的纸币,假设每种币值的数量都足够多,编写程序求组成N元(N为0~10000的非负整数)的不同组合的个数。

  • 输入
    输入包括一个整数n(1 ≤ n ≤ 10000)

  • 输出
    输出一个整数,表示不同的组合方案数


解析

看到这道题目,我的第一反映这是一道dp问题,因为类似的题目太多了,比如青蛙跳台阶,和这个题目是一样的问法。一次可以跳几阶,和一次用几种硬币,然后都有一个目标值,总共为N元(N阶)。所以最先想到的方法是递归求解,

f(N) = f(N-1)+f(N-5)+…+f(N-100)

然后按照一般的dp问题解决方法,写出递归公式后,找递归出口。这个时候我就遇到了问题。1,5,10,20,50,100这几个数字,需要多次判断N的值与各个币值的大小关系,而且与跳台阶本质上有一个不同的就是,跳台阶是一个顺序的过程,而拼凑钱币是没有先后顺序一说的,也就是,我只考察各个币种的个数,而不关心拿出的顺序。所以直接使用递归,会有大量的重复数据。

这个时候更换思路,不要从后往前遍历所有的解,而是,从前往后推出所有的合法解。最粗暴的思路就是枚举,6层循环判断所有合理解。然后考虑在这6层循环中,有没有什么限制条件:

  • 币种1,对于任意N,都只有一种方法 1 * N

  • 币种100(最大面值),其方法数,包含了许多子问题:100,可以使用的方法有 N/100种,那么剩下的问题就是,N -k*100 为最终目标时,使用{1,5,10,20,50}这些币种所构成的方法数。

根据上面的限制二,我们有看到熟悉的DP味道。这样,不断的把问题简化为子问题,最终不就回到了只剩下币种为1时的问题规模。现在我们就要考虑怎么用代码来模拟这个过程的问题。类似DP问题,我们需要一个递归笔记本,记录过程中所有的方法解,然后根据现有解,去推出未知解。

接下来看代码:


import java.util.*;

public class Main{
    public static long solution(int n) {
        int coins[] = { 1, 5, 10, 20, 50, 100 };
        int h = coins.length;
        long dp[][] = new long[h][n + 1];//存放所有解的笔记本,二维数组存放
        //dp[x][y]:x 为当前可用币种数目,y 为所需要凑的目标值即子问题的目标值
        Arrays.fill(dp[0], 1);//当币种为1时,对于任意N都为1种解法
        for (int i = 1; i < h; i++) {//逐次增加币种
            for (int j = 1; j <= n; j++) {//逐次增加目标值
                int m = j / coins[i];//当前问题,可用的最大币种的数量
                for (int k = 0; k <= m; k++) {
                //用K个最大币种时,问题缩小为:用1~次最大币种,目标值为j-K*coins[i]的解法有
                    dp[i][j] += dp[i - 1][j - k * coins[i]];
                }
            }
        }
        //所有子问题解决,得到最终的解
        return dp[h - 1][n];
    }

    public static void main(String args[]) {
        Scanner sc = new Scanner(System.in);
        int n = sc.nextInt();
        System.out.println(solution(n))
    }
}

总结

(个人看法,仅供参考)
DP问题的本质,是将问题分为若干个有限规模的子问题,然后根据子问题,得到最终解,并且子问题是相同的。不管是递推还是递归,都是DP问题的解决思路,只不过一个是从初始状态开始,类似循环枚举,递归是从结果开始。递归很难控制,整个程序的发展顺序,一般都会遍历到所有解,包括重复解,而递推不同在于,可以控制,整个递推的过程,从而筛选掉不需要的解。各有利弊,面对不同的问题,灵活运用最好。

阅读更多

没有更多推荐了,返回首页