1、MSELoss原理
MSELoss计算预测值和真实值的mean squared error (squared L2 norm,均方误差) 。
若是mean:先计算预测值x与真实值y这两个tensor中的对应位置的两个元素的差的平方,得到一个新的同样大小的tensor,然后求这个tensor中所有元素的均值;
若是sum:先计算预测值x与真实值y这两个tensor中的对应位置的两个元素的差的平方,得到一个新的同样大小的tensor,然后求这个tensor中所有元素的和;
2、使用L1Loss进行多分类
2.1 数据源以及如何打标签
以mnist数据源为例,共有10个分类。mnist中每张图片的标签是0-9中的一个数字。
2.2 模型训练
L1Loss层前一层输出的特征图的大小必须是1*1,我们可以使用一个out_features是1的Linear层(全连接层)来实现。