pytorch中的loss函数(4):MSELoss

本文深入解析了MSELoss与L1Loss两种损失函数的原理及应用。MSELoss通过计算预测值与真实值之间的均方误差,适用于回归问题。而L1Loss则用于多分类任务,要求模型最后一层输出为1*1特征图,通过L1距离衡量预测与实际标签的差距。
摘要由CSDN通过智能技术生成

1、MSELoss原理

 MSELoss计算预测值和真实值的mean squared error (squared L2 norm,均方误差) 。

loss(x,y)=\left\{\begin{matrix} mean(L),if reduction='mean'\\sum(L) ,if reduction='sum' \end{matrix}\right.

L=\{​{l}_1,...,{l}_N\}^{T},{l}_n=({x}_n-{y}_n)^{2}

若是mean:先计算预测值x与真实值y这两个tensor中的对应位置的两个元素的差的平方,得到一个新的同样大小的tensor,然后求这个tensor中所有元素的均值;

若是sum:先计算预测值x与真实值y这两个tensor中的对应位置的两个元素的差的平方,得到一个新的同样大小的tensor,然后求这个tensor中所有元素的和;
 

2、使用L1Loss进行多分类

2.1 数据源以及如何打标签

以mnist数据源为例,共有10个分类。mnist中每张图片的标签是0-9中的一个数字。

2.2 模型训练

L1Loss层前一层输出的特征图的大小必须是1*1,我们可以使用一个out_features是1的Linear层(全连接层)来实现。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值