完全背包问题(朴素解法、优化后二维、优化后一维)

该博客探讨了完全背包问题,介绍了如何使用动态规划来解决这个问题,包括朴素解法和两种优化后的二维及一维解决方案,以实现背包内物品的最大价值选择。
摘要由CSDN通过智能技术生成

题目描述:
有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。

第 i 种物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入:
4 5
1 2
2 4
3 4
4 5

输出:
10

朴素解法:

#include<iostream>
using namespace std;
const int N=1010;
int v[N],w[N];
int f[N][N];
int n,m;

int main(){
   
    cin>>n>>m;
    for(int i=1;i<=n;i++)cin>>v[i]>>w[i];
    for(int i=1;i<=n;i++){
   
        for(int j
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值