9268:酒鬼——两种方式dp

该博客讨论了9268号问题,即酒鬼如何在限制连续喝酒数量不超过2瓶的情况下,从一排不同量的酒中获取最大价值。提出了两种动态规划的思路:一是基于大盗阿福的考虑方式,转移表达式为f[i] = max{f[i-1], f[i-2]+a[i], f[i-3]+a[i]+a[i-1]};二是采用状态机模型,定义f[i][j]表示第i瓶结束时连续喝j瓶的最大值,通过转移方程求解。博客提供了相应的C++代码实现。" 103621083,9230652,C#模拟验证蒙提霍尔悖论,"['概率论', '算法', 'C#编程', '游戏理论', '模拟']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

链接:9268:酒鬼

题目不再赘述。

题意理解: 一排酒,每个瓶子里有不同量的酒,酒鬼可以选择喝或者不喝(喝就必须喝完),原题中说的不可以连续喝超过三瓶实际上是一个坑,其实是不能超过2,不可以达到3.

思路1: 类似于大盗阿福的考虑方式。令f[i]表示前i个酒瓶可以喝的最大值,对于第i个酒瓶,有三种(根据最大可连续喝的数量来进行的)转移方式:不选a[i]和a[i-1],选a[i]不选a[i-1],选a[i]和a[i-1]。
于是有转移表达式,:f[i] = max{f[i-1],f[i-2]+a[i],f[i-3]+a[i]+a[i-1]}。
根据表达式需要初始化:f[1]=a[1],f[2]=a[1]+a[2],f[3]=max(max(a[1]+a[2],a[1]+a[3]),a[2]+a[3]);
代码1:

//类似于大盗阿福的做法
#include<iostream>
using namespace std;
const int N =705;
int f[N];//f[i]表示前i个酒瓶最多可以喝多少酒;f[i]=max{f[i-1],f[i-2]+a[i],f[i-3]+a[i]+a[i-1]}
int a[N];
int main(){
   
    int n;
    cin>>n;
    for(int i=1;i<=n;i++) cin>>a[i];
    
    f[1]=a[1],f[2]=a[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值