Coregistered
相关文件: spm_cfg_coreg.m
Coregister: Estimate & Reslice
使用刚体模型和图像重新切片进行受试者内配准。
此处使用的配准方法基于 Collignon 等人的工作。本文中描述的原始插值方法已被更改,以便提供更平滑的成本函数。图像也略微平滑,直方图也是如此。这一切都是为了让成本函数尽可能平滑,从而实现更快的收敛并减少出现局部最小值的机会。
在配准结束时,将显示体素到体素的仿射变换矩阵,以及原始方向和最终方向的图像直方图。配准的图像显示在底部。
请注意,Coreg 仅尝试在图像之间进行刚性对齐。fMRI 往往具有较大的扭曲,仅靠刚性对齐无法纠正。在将失真的 fMRI 与相对未失真的解剖扫描(例如 MPRAGE)对齐时,SPM 软件中尚无任何功能可以纠正这种失真。
配准参数存储在“源”和“其他”图像的标题中。这些图像也被重新切片以与源图像逐个像素匹配。重新切片的图像名称与原始图像相同,只是它们以“r”为前缀。
Reference Image
这是假定保持静止的图像(有时称为目标或模板图像),而源图像则移动以匹配它。
Source Image
这是为了与参考图像最佳匹配而进行抖动的图像
Other Images
这些是需要与源图像保持对齐的任何图像。
Estimation Options
各种配准选项,传递给 Powell 优化算法.
Objective Function
配准涉及寻找最大化或最小化某些目标函数的参数。
对于多模态配准,请使用互信息(Mutual Information)、归一化互信息(Normalised Mutual Information) 或熵相关系数(Entropy Correlation Coefficient)。
对于同模态,您还可以使用归一化互相关(Normalised Cross Correlation)。
Separation
采样点之间的平均距离(以毫米为单位)。
可以是一个向量,以允许粗略配准,然后逐渐进行精细配准。
Tolerances
每个参数的准确度。
当连续估计之间的差异小于所需的容差时,迭代停止。
Histogram Smoothing
高斯平滑适用于 256x256 联合直方图。
其他信息理论配准方法使用较少的箱体,但高斯平滑似乎更为优雅。
Reslice Options
各种重新切片选项。
Interpolation
在不同空间中写入图像时对其进行采样的方法。
最近邻法速度最快,但通常不推荐使用。它可以用于重新定位图像,同时保留原始强度(例如,由标签组成的图像)。三线性插值适用于 PET,或重新对齐和重新切片的 fMRI。如果转换中包含受试者运动(来自 fMRI 时间序列),则最好使用更高阶的方法。请注意,更高阶的 B 样条插值 速度较慢,因为它使用了更多邻居。
Wrapping
这表示值应该在体积中的哪个方向环绕。
这些通常是:
不环绕 - 对于 PET 或已经进行过空间变换的图像。
在 Y 方向环绕 - 对于(未重新切片的)MRI,其中相位编码在 Y 方向(体素空间)。
Masking
由于主体运动,不同的图像可能具有不同的零模式,因为无法从这些零模式中采样数据。启用掩码后,程序将搜索整个时间序列,寻找需要从原始图像之外采样的体素。如果出现这种情况,则将整个图像集的该体素设置为零(除非图像格式可以表示 NaN,在这种情况下尽可能使用 NaN)。
Filename Prefix
添加到重新切片图像文件的文件名前面的字符串。默认前缀为“r”。
其他
Coregister: Estimate
使用刚体模型进行受试者内配准。
此处使用的配准方法基于 Collignon 等人的工作。本文中描述的原始插值方法已被更改,以便提供更平滑的成本函数。图像也略微平滑,直方图也是如此。这一切都是为了让成本函数尽可能平滑,从而实现更快的收敛并减少局部最小值的可能性。
在配准结束时,将显示体素到体素的仿射变换矩阵,以及原始方向和最终方向的图像直方图。已配准的图像显示在底部。
配准参数存储在“源”和“其他”图像的标题中。
Coregister: Reslice
重新切片图像,使体素与定义某个空间的图像进行匹配。
重新切片的图像的名称与原始图像相同,只是它们以“r”为前缀。
Image Defining Space
这与参考图像类似。图像被重新切片以匹配此图像(前提是它们已首先配准)。
Images to Reslice
这些图像被重新切片为与空间定义图像相同的尺寸、体素大小、方向等。
Coregister
使用刚体模型进行受试者内配准。
刚体变换(3D)可以通过围绕不同轴的三个平移和三个旋转来参数化。
您可以选择估计变换、根据某些刚体变换重新切片图像或估计和应用刚体变换。