hdu1879 继续畅通工程 (kruskal求最小生成树)

继续畅通工程

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 18456    Accepted Submission(s): 7979


Problem Description
省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可)。现得到城镇道路统计表,表中列出了任意两城镇间修建道路的费用,以及该道路是否已经修通的状态。现请你编写程序,计算出全省畅通需要的最低成本。
 

Input
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( 1< N < 100 );随后的 N(N-1)/2 行对应村庄间道路的成本及修建状态,每行给4个正整数,分别是两个村庄的编号(从1编号到N),此两村庄间道路的成本,以及修建状态:1表示已建,0表示未建。

当N为0时输入结束。
 

Output
每个测试用例的输出占一行,输出全省畅通需要的最低成本。
 

Sample Input
  
  
3 1 2 1 0 1 3 2 0 2 3 4 0 3 1 2 1 0 1 3 2 0 2 3 4 1 3 1 2 1 0 1 3 2 1 2 3 4 1 0
 

Sample Output
  
  
3 1 0
 

Author
ZJU
 

Source
 

Recommend
We have carefully selected several similar problems for you:   1863  1874  1301  1162  1198 
 


代码:

#include<cstdio>
#include<algorithm>
using namespace std;

const int maxn=1e2;
int f[maxn+10];
struct edge{
	int u,v,w;
}e[maxn*maxn+10];

bool cmp_e(edge a,edge b)
{
  return a.w<b.w;
}

int find(int x)
{
  if(f[x]==x)return x;
  return f[x]=find(f[x]);
}

int main()
{
  //freopen("1.in","r",stdin);
  
  int n,i,j,k,s,x,y,z,ans;
  while(scanf("%d",&n),n)
    {
      for(i=1;i<=n;i++)f[i]=i;
      for(s=0,i=1;i<n;i++)
        for(j=i+1;j<=n;j++)
          {
            scanf("%d%d%d%d",&x,&y,&z,&k);
            if(k==1)f[find(x)]=find(y);
            else e[++s].u=x,e[s].v=y,e[s].w=z;
		  }
	  sort(e+1,e+s+1,cmp_e);
	  for(ans=0,i=1;i<=s;i++)
	    {
	      x=find(e[i].u),y=find(e[i].v);
	      if(x!=y)ans+=e[i].w,f[find(x)]=find(y);
		}
	  printf("%d\n",ans);
	}
  return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值