cv sites

http://www.computervisiononline.com/

https://www.coursera.org/course/vision

http://en.wikipedia.org/wiki/Computer_vision

http://www.cs.ubc.ca/~lowe/vision.html

http://cvpr.in.tum.de/

http://freecode.com/projects/opencv

http://code.google.com/p/computer-vision-code-sharing/

http://code.opencv.org/projects/opencv/wiki

http://www.cs.cmu.edu/~cil/v-source.html


from:cvchina:http://www.cvchina.info/2011/09/05/uiuc-cod/


Jia-Bin Huang童鞋收集,此童鞋毕业于国立交通大学,之前拍过很多CVPR举办地科罗拉多州的照片,这里大多为matlab code, 

link: https://netfiles.uiuc.edu/jbhuang1/www/resources/vision/index.html



Computer Vision Resources

Maintained by Jia-Bin Huang

Submit resource links here

Lastest Update: July 4, 2011

Softwares

Topic

Resources

References

Feature Extraction

  1. D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints, IJCV 2004. [PDF]
  2. Y. Ke and R. Sukthankar, PCA-SIFT: A More Distinctive Representation for Local Image Descriptors,CVPR, 2004. [PDF]
  3. J.M. Morel and G.Yu, ASIFT, A new framework for fully affine invariant image comparisonSIAM Journal on Imaging Sciences, 2009. [PDF]
  4. H. Bay, T. Tuytelaars and L. V. Gool SURF: Speeded Up Robust Features,ECCV, 2006. [PDF]
  5. K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir and L. Van Gool, A comparison of affine region detectorsIJCV, 2005. [PDF]
  6. J. Matas, O. Chum, M. Urba, and T. Pajdla. Robust wide baseline stereo from maximally stable extremal regionsBMVC, 2002. [PDF]
  7. A. C. Berg, T. L. Berg, and J. Malik. Shape matching and object recognition using low distortion correspondences. CVPR, 2005. [PDF]
  8. E. Shechtman and M. Irani. Matching local self-similarities across images and videos, CVPR, 2007. [PDF]
  9. T. Deselaers and V. Ferrari. Global and Efficient Self-Similarity for Object Classification and DetectionCVPR 2010. [PDF]
  10. N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human DetectionCVPR 2005. [PDF]
  11. A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic representation of the spatial envelopeIJCV, 2001. [PDF]
  12. S. Belongie, J. Malik and J. Puzicha. Shape matching and object recognition using shape contextsPAMI, 2002. [PDF]
  13. K. E. A. van de Sande, T. Gevers and Cees G. M. Snoek, Evaluating Color Descriptors for Object and Scene RecognitionPAMI, 2010.
  14. I. Laptev, On Space-Time Interest Points, IJCV, 2005. [PDF]
  15. J. Kim and K. Grauman, Boundary Preserving Dense Local RegionsCVPR 2011. [PDF]

Image Segmentation



  1. J. Shi and J Malik, Normalized Cuts and Image SegmentationPAMI, 2000 [PDF]
  2. X. Ren and J. Malik. Learning a classification model for segmentation.ICCV, 2003. [PDF]
  3. P. Felzenszwalb and D. Huttenlocher. Efficient Graph-Based Image SegmentationIJCV 2004. [PDF]
  4. D. Comaniciu, P Meer. Mean Shift: A Robust Approach Toward Feature Space AnalysisPAMI 2002. [PDF]
  5. P. Arbelaez, M. Maire, C. Fowlkes and J. Malik. Contour Detection and Hierarchical Image SegmentationPAMI, 2011. [PDF]
  6. A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson, and K. Siddiqi, TurboPixels: Fast Superpixels Using Geometric FlowsPAMI 2009. [PDF]
  7. A. Vedaldi and S. Soatto, Quick Shift and Kernel Methodsfor Mode Seeking,ECCV, 2008. [PDF]
  8. R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk, SLIC Superpixels, EPFL Technical Report, 2010. [PDF]
  9. A. Y. Yang, J. Wright, S. Shankar Sastry, Y. Ma , Unsupervised Segmentation of Natural Images via Lossy Data CompressionCVIU, 2007. [PDF]
  10. S. Maji, N. Vishnoi and J. Malik, Biased Normalized CutCVPR 2011
  11. E. Akbas and N. Ahuja, “From ramp discontinuities to segmentation tree,”  ACCV 2009. [PDF]
  12. N. Ahuja, “A Transform for Multiscale Image Segmentation by Integrated Edge and Region Detection,” PAMI 1996 [PDF]
  13. M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa, Entropy Rate Superpixel Segmentation, CVPR 2011 [PDF]

Object Detection

  • A simple object detector with boosting [Project]

  • INRIA Object Detection and Localization Toolkit [1] [Project]

  • Discriminatively Trained Deformable Part Models [2] [Project]

  • Cascade Object Detection with Deformable Part Models [3] [Project]

  • Poselet [4] [Project]

  • Implicit Shape Model [5] [Project]

  • Viola and Jones's Face Detection [6] [Project]
  1. N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human DetectionCVPR 2005. [PDF]
  2. P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan.
    Object Detection with Discriminatively Trained Part Based ModelsPAMI, 2010 [PDF]
  3. P. Felzenszwalb, R. Girshick, D. McAllester. Cascade Object Detection with Deformable Part ModelsCVPR 2010 [PDF]
  4. L. Bourdev, J. Malik, Poselets: Body Part Detectors Trained Using 3D Human Pose AnnotationsICCV 2009 [PDF]
  5. B. Leibe, A. Leonardis, B. Schiele. Robust Object Detection with Interleaved Categorization and SegmentationIJCV, 2008. [PDF]
  6. P. Viola and M. Jones, Rapid Object Detection Using a Boosted Cascade of Simple FeaturesCVPR 2001. [PDF]

Saliency Detection

  • Itti, Koch, and Niebur' saliency detection [1] [Matlab code]

  • Frequency-tuned salient region detection [2] [Project]

  • Saliency detection using maximum symmetric surround [3] [Project]

  • Attention via Information Maximization [4] [Matlab code]

  • Context-aware saliency detection [5] [Matlab code]

  • Graph-based visual saliency [6] [Matlab code]

  • Saliency detection: A spectral residual approach. [7] [Matlab code]

  • Segmenting salient objects from images and videos. [8] [Matlab code]

  • Saliency Using Natural statistics. [9] [Matlab code]

  • Discriminant Saliency for Visual Recognition from Cluttered Scenes. [10] [Code]

  • Learning to Predict Where Humans Look [11] [Project]

  • Global Contrast based Salient Region Detection [12] [Project]
  1. L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysisPAMI, 1998. [PDF]
  2. R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk. Frequency-tuned salient region detection. In CVPR, 2009. [PDF]
  3. R. Achanta and S. Susstrunk. Saliency detection using maximum symmetric surround. In ICIP, 2010. [PDF]
  4. N. Bruce and J. Tsotsos. Saliency based on information maximization. InNIPS, 2005. [PDF]
  5. S. Goferman, L. Zelnik-Manor, and A. Tal. Context-aware saliency detection. In CVPR, 2010. [PDF]
  6. J. Harel, C. Koch, and P. Perona. Graph-based visual saliency. NIPS, 2007. [PDF]
  7. X. Hou and L. Zhang. Saliency detection: A spectral residual approach.CVPR, 2007. [PDF]
  8. E. Rahtu, J. Kannala, M. Salo, and J. Heikkila. Segmenting salient objects from images and videosCVPR, 2010. [PDF]
  9. L. Zhang, M. Tong, T. Marks, H. Shan, and G. Cottrell. Sun: A bayesian framework for saliency using natural statisticsJournal of Vision, 2008. [PDF]
  10. D. Gao and N. Vasconcelos, Discriminant Saliency for Visual Recognition from Cluttered ScenesNIPS, 2004. [PDF]
  11. T. Judd and K. Ehinger and F. Durand and A. Torralba, Learning to Predict Where Humans LookICCV, 2009. [PDF]
  12. M.-M. Cheng, G.-X. Zhang, N. J. Mitra, X. Huang, S.-M. Hu. Global Contrast based Salient Region DetectionCVPR 2011.

Image Classification

  1. K. Grauman and T. Darrell, The Pyramid Match Kernel: Discriminative Classification with Sets of Image FeaturesICCV 2005. [PDF]
  2. S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene CategoriesCVPR 2006[PDF]
  3. J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained Linear Coding for Image ClassificationCVPR, 2010 [PDF]
  4. J. Yang, K. Yu, Y. Gong, T. Huang, Linear Spatial Pyramid Matching using Sparse Coding for Image ClassificationCVPR, 2009 [PDF]
  5. M. Varma and A. Zisserman, A statistical approach to texture classification from single images, IJCV2005. [PDF]
  6. A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman, Multiple Kernels for Object DetectionICCV, 2009. [PDF]
  7. P. Gehler and S. Nowozin, On Feature Combination for Multiclass Object Detection, ICCV, 2009. [PDF]
  8. J. Tighe and S. Lazebnik, SuperParsing: Scalable Nonparametric Image
    Parsing with Superpixels
    , ECCV 2010. [PDF]

Category-Independent Object Proposal

  • Objectness measure [1] [Code]

  • Parametric min-cut [2] [Project]

  • Object proposal [3] [Project]

  1. B. Alexe, T. Deselaers, V. Ferrari, What is an Object?CVPR 2010 [PDF]
  2. J. Carreira and C. Sminchisescu. Constrained Parametric Min-Cuts for Automatic Object SegmentationCVPR 2010. [PDF]
  3. I. Endres and D. Hoiem. Category Independent Object Proposals, ECCV 2010. [PDF]

MRF

  1. Y. Boykov, O. Veksler and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001 [PDF]

Shadow Detection

  • Shadow Detection using Paired Region [Project]

  • Ground shadow detection [Project]

  1. R. Guo, Q. Dai and D. Hoiem, Single-Image Shadow Detection and Removal using Paired Regions, CVPR 2011 [PDF]
  2. J.-F. Lalonde, A. A. Efros, S. G. Narasimhan, Detecting Ground Shadowsin Outdoor Consumer PhotographsECCV 2010 [PDF]

Optical Flow

  1. B.D. Lucas and T. Kanade, An Iterative Image Registration Technique with an Application to Stereo VisionIJCAI 1981. [PDF]
  2. J. Shi, C. Tomasi, Good Feature to TrackCVPR 1994. [PDF]
  3. C. Liu. Beyond Pixels: Exploring New Representations and Applications for Motion Analysis. Doctoral ThesisMIT 2009. [PDF]
  4. B.K.P. Horn and B.G. Schunck, Determining Optical FlowArtificial Intelligence 1981. [PDF]
  5. M. J. Black and P. Anandan, A framework for the robust estimation of optical flow, ICCV 93. [PDF]
  6. D. Sun, S. Roth, and M. J. Black, Secrets of optical flow estimation and their principlesCVPR 2010. [PDF]
  7. T. Brox, J. Malik, Large displacement optical flow: descriptor matching in variational motion estimationPAMI, 2010 [PDF]
  8. T. Brox, A. Bruhn, N. Papenberg, J. Weickert, High accuracy optical flow estimation based on a theory for warpingECCV 2004 [PDF]

Object Tracking

  • Particle filter object tracking [1] [Project]

  • KLT Tracker [2-3] [Project]

  • MILTrack [4] [Code]

  • Incremental Learning for Robust Visual Tracking [5] [Project]

  • Online Boosting Trackers [6-7] [Project]

  • L1 Tracking [8] [Matlab code]

  1. P. Perez, C. Hue, J. Vermaak, and M. Gangnet. Color-Based Probabilistic Tracking ECCV, 2002. [PDF]
  2. B.D. Lucas and T. Kanade, An Iterative Image Registration Technique with an Application to Stereo VisionIJCAI 1981. [PDF]
  3. J. Shi, C. Tomasi, Good Feature to TrackCVPR 1994. [PDF]
  4. B. Babenko, M. H. Yang, S. Belongie, Robust Object Tracking with Online Multiple Instance LearningPAMI 2011 [PDF]
  5. D. Ross, J. Lim, R.-S. Lin, M.-H. Yang, Incremental Learning for Robust Visual TrackingIJCV 2007 [PDF]
  6. H. Grabner, and H. Bischof, On-line Boosting and Vision, CVPR 2006 [PDF]
  7. H. Grabner, C. Leistner, and H. Bischof, Semi-supervised On-line Boosting for Robust TrackingECCV 2008 [PDF]
  8. X. Mei and H. Ling, Robust Visual Tracking using L1 Minimization, ICCV, 2009. [PDF]

Image Matting

  • Closed Form Matting [Code]

  • Spectral Matting [Project]

  • Learning-based Matting [Code]

  1. A. Levin D. Lischinski and Y. WeissA Closed Form Solution to Natural Image MattingPAMI 2008 [PDF]
  2. A. Levin, A. Rav-Acha, D. Lischinski. Spectral MattingPAMI 2008. [PDF]
  3. Y. Zheng and C. Kambhamettu, Learning Based Digital MattingICCV 2009 [PDF]

Bilateral Filtering

  • Fast Bilateral Filter [Project]

  • Real-time O(1) Bilateral Filtering [Code]

  • SVM for Edge-Preserving Filtering [Code]

  1. Q. Yang, K.-H. Tan and N. Ahuja,  Real-time O(1) Bilateral Filtering
    CVPR 2009. [PDF]
  2. Q. Yang, S. Wang, and N. Ahuja, SVM for Edge-Preserving Filtering
    CVPR 2010. [PDF]

Image Denoising

 

Image Super-Resolution

  • MRF for image super-resolution [Project]

  • Multi-frame image super-resolution [Project]

  • UCSC Super-resolution [Project]

  • Sprarse coding super-resolution [Code]

 

Image Deblurring

  • Eficient Marginal Likelihood Optimization in Blind Deconvolution [Code]

  • Analyzing spatially varying blur [Project]

  • Radon Transform [Code]

 

Image Quality Assessment

  1. L. Zhang, L. Zhang, X. Mou and D. Zhang, FSIM: A Feature Similarity Index for Image Quality AssessmentTIP 2011. [PDF]
  2. N. Damera-Venkata, and T. D. Kite, W. S. Geisler, B. L. Evans, and A. C. Bovik,Image Quality Assessment Based on a Degradation ModelTIP 2000. [PDF]
  3. Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, TIP 2004. [PDF]
  4. B. Ghanem, E. Resendiz, and N. Ahuja, Segmentation-Based Perceptual Image Quality Assessment (SPIQA)ICIP 2008. [PDF]

Density Estimation

  • Kernel Density Estimation Toolbox [Project]
 

Dimension Reduction

 

Sparse Coding

  

Low-Rank Matrix Completion

  

Nearest Neighbors matching

 

Steoreo

  1. D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithmsIJCV 2002 [PDF]

Structure from motion

 

  1. N. Snavely, S. M. Seitz, R. Szeliski. Photo Tourism: Exploring image collections in 3DSIGGRAPH, 2006. [PDF]

Distance Transformation

  • Distance Transforms of Sampled Functions [1] [Project]
  1. P. F. Felzenszwalb and D. P. Huttenlocher. Distance transforms of sampled functionsTechnical report, Cornell University, 2004. [PDF]

Chamfer Matching

  • Fast Directional Chamfer Matching [Code]
  1. M.-Y. Liu, O. Tuzel, A. Veeraraghavan, and R. Chellappa, Fast Directional Chamfer MatchingCVPR 2010 [PDF]

Clustering

 

Classification

 

Regression

  • SVM

  • RVM

  • GPR

 

Multiple Kernel Learning (MKL)

  1. S. Sonnenburg, G. Rätsch, C. Schäfer, B. Schölkopf . Large scale multiple kernel learningJMLR, 2006. [PDF]
  2. F. Orabona and L. Jie. Ultra-fast optimization algorithm for sparse multi kernel learning. ICML, 2011. [PDF]
  3. F. Orabona, L. Jie, and B. Caputo. Online-batch strongly convex multi kernel learningCVPR, 2010. [PDF]
  4. A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. SimplemklJMRL, 2008. [PDF]

Multiple Instance Learning (MIL)

  1. C. Leistner, A. Saffari, and H. Bischof, MIForests: Multiple-Instance Learning with Randomized TreesECCV 2010. [PDF]
  2. Z. Fu, A. Robles-Kelly, and J. Zhou, MILIS: Multiple instance learning with instance selectionPAMI 2010. [PDF]
  3. Y. Chen, J. Bi and J. Z. Wang, MILES: Multiple-Instance Learning via Embedded Instance SelectionPAMI 2006 [PDF]
  4. Yixin Chen and James Z. Wang, Image Categorization by Learning and Reasoning with RegionsJMLR 2004. [PDF]

Other Utilities

  • Code for downloading Flickr images, by James Hays [Code]

  • The Lightspeed Matlab Toolbox by Tom Minka [Code]

  • MATLAB Functions for Multiple View Geometry [Code]

  • Peter's Functions for Computer Vision [Code]

  • Statistical Pattern Recognition Toolbox [Code]
 

Useful Links (dataset, lectures, and other softwares)

Conference Information

Papers

Datasets

Lectures

Source Codes

 

Submission

If you like to contribute links (or your own projects) to this page, please kindly fill up the following form. I will update the links soon. Thanks!


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值