【普及+/提高】洛谷P1516—— 青蛙的约会

见:P1516 青蛙的约会 - 洛谷

想进步的进来~

题目描述

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。

我们把这两只青蛙分别叫做青蛙 A 和青蛙 B,并且规定纬度线上东经 0 度处为原点,由东往西为正方向,单位长度 1 米,这样我们就得到了一条首尾相接的数轴。设青蛙 A 的出发点坐标是 x,青蛙 B 的出发点坐标是 y。青蛙 A 一次能跳 m 米,青蛙 B 一次能跳 n 米,两只青蛙跳一次所花费的时间相同。纬度线总长 L 米。现在要你求出它们跳了几次以后才会碰面。

输入格式

输入只包括一行五个整数 x,y,m,n,L。

输出格式

输出碰面所需要的次数,如果永远不可能碰面则输出一行一个字符串 Impossible

输入输出样例

in:
1 2 3 4 5
out:
4

说明/提示

对于 100% 的数据,1≤x=y≤2×109,1≤m,n≤2×109,1≤L≤2.1×109。

这是一篇有详细证明的题解 qwq~

首先我们可以发现,

这个题就是为了让我们解一个方程:

x+km≡y+kn(modl)

其中 k 为所求。

让我们把这个看上去很 zz 的方程变化一下:

x+km−(y+kn)=lz,z∈Z

那么就是:

x−y+k(m−n)−lzk(m−n)−lz​=0=−(x−y)​

我们设 S=x−y,W=n−m

(注意这个地方有变号,即 m−n 被我设作 n−m,为的是让等式右边的 S 冠正号)。

这个式子便可写作:

kW+lz=S

诶,这不就是一个不定方程吗?

对啊,所以我们所要做的就是对这个不定方程求出最小解。

那么其实,

对于这个方程,

我们是要解出步数的最小值,

所以我们只需要求出k最小即可。

我们可以通过扩展欧几里德算法求出一组特解,

然后对于这组特解,我们再推导出最小解来。

但由于这个方程在解 exgcd 的时候,

那个方程转化成了:

kj​W+lzj​=(W,l)

那么我们求出的 kj​ 就是这个方程得一个特解。

之后,这个方程的所有解就可以表示成

ki​=kj​+tgcd(W,l)l​


这是上面这个式子为什么可以这么做的证明:

若有 ax+by=c 且 a0​x+b0​y=c。

那么便有 a(x−x0​)+b(y−y0​)=0。

两边同时除以 gcd(a,b) 可得

gcd(a,b)a​(x−x0​)=−gcd(a,b)b​(y−y0​)(1)

而因为

(gcd(a,b)a​,gcd(a,b)b​)=1

所以由 (1) 可得 gcd(a,b)b​ 整除 (x−x0​)。

所以很显然有

gcd(a,b)b​×t=(x−x0​),t∈Z

那么就有对于任意一个 xi​,有

xi​=x0​+gcd(a,b)b​×t



让我们回到原问题。因为

kj​=kmin​+gcd(W,l)l​×t

这个方程对于 t∈Z 而言,想要通过一个特解推出最小解,可以如此做:

kmin​=kj​modgcd(W,l)l​

而因为这个 k 是建立在 exgcd 得出的方程上的,方程右边是 gcd(W,l) 而不是 S。所以最后我们需要将结果 ×gcd(W,l)S​ 。

.这个方程就是扩展欧几里得

代码这样

​
​#include <bits/stdc++.h>
using namespace std;
long long k(long long a, long long b, long long &x, long long &y) { 
//十年OI一场空,不开long long见祖宗
  if (!b) {
    x=1,y=0;
    return a;
  }
  long long d=k(b,a%b,y,x);
  y-=a/b*x;
  return d;
}

int main() {
  long long x,y,m,n,l,s,t;
  cin>>x>>y>>m>>n>>l;
  long long d=k(m-n,l,s,t);
  if((y-x)%d!=0){
  	cout<<"Impossible";
  	return 0;
  }
  cout<<((s*(y-x)/d)%abs(l/d)+abs(l/d))%abs(l/d);//处理负数
  return 0;
}

​

​

各位大佬 

关注+收藏+点赞

好吗

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值