基于Python+Django的气象可视化系统 毕业设计-附源码84335

目  录

摘 要

1 绪论

1.1 选题背景与意义

1.2 开发现状

1.3 主要内容

2 气象可视化系统系统分析

2.1 可行性分析

2.1.1 技术可行性分析

2.1.2 经济可行性分析

2.1.3 法律可行性分析

2.2 系统功能分析

2.2.1 功能性分析

2.2.2 非功能性分析

2.3 系统用例分析

2.4 系统业务流程分析

2.5本章小结

3 气象可视化系统总体设计

3.1 系统功能模块设计

3.2 数据库设计

3.2.1 数据库概念结构设计

3.2.2 数据库逻辑结构设计

3.3本章小结

4 气象可视化系统详细设计与实现

4.1 后台首页界面

4.2 用户注册界面

4.3 用户登录界面

4.4 通知预警管理界面

4.5 城市信息管理界面

4.6 日期数据管理界面

4.7 小时数据管理界面

5系统测试

5.1 系统测试用例

5.2 系统测试结果

结论

参考文献

致  谢

 要

随着大数据技术的快速发展,气象数据的规模和复杂性不断增加,对气象数据的分析和可视化需求也越来越迫切。本研究结合Django框架和Python技术对气象数据进行分析和可视化展示,旨在提供一种高效、可扩展的气象数据处理方法

系统分析了该系统的背景、作用和意义,包括对海量的气象数据进行高效清洗处理和分析,并利用数据间的关联性进行预测。然后对系统的各项功能需求进行了详细分析,并探讨了可能遇到的技术问题。接下来介绍了设计系统所需的技术软件和设计思想,包括Django框架、MySQL数据库和Python语言等。最后,详细介绍了如何实现气象可视化系统,并进行了系统的部署和运行。通过本论文的研究,旨在证明系统的必要性和技术可行性,并为相关领域的研究提供参考和指导。

关键词:Python;Django框架;气象可视化;数据清洗

Abstract

With the rapid development of big data technology, the scale and complexity of meteorological data continue to increase, and the demand for analysis and visualization of meteorological data is becoming increasingly urgent. This study combines the Django framework and Python technology to analyze and visualize meteorological data, aiming to provide an efficient and scalable meteorological data processing method.

The system analyzed the background, function, and significance of the system, including efficient cleaning and analysis of massive meteorological data, and utilizing the correlation between data for prediction. Then a detailed analysis was conducted on the various functional requirements of the system, and possible technical issues were discussed. The following introduces the technical software and design ideas required for designing the system, including the Django framework, MySQL database, and Python language. Finally, a detailed introduction was given on how to implement a meteorological visualization system, and the system was deployed and operated. Through the research of this paper, the aim is to demonstrate the necessity and technical feasibility of the system, and provide reference and guidance for research in related fields.

Keywords: Python; Django framework; Meteorological visualization; Data cleaning

1 绪论

1.1 选题背景与意义

随着气候变化的加剧和全球气象灾害的频发,人们越来越关注气象数据的分析和可视化。气象数据分析和可视化具有重要的科学研究和实际应用价值,不仅可以提供有效的气象预警和应急响应,还可以为农业、能源、交通等领域的决策提供重要参考依据。目前,随着互联网和大数据技术的快速发展,气象数据的获取和处理变得更加便捷和高效。然而,如何对大量的气象数据进行有效的分析和可视化仍然是一个挑战。传统的气象数据分析方法需要专业的知识和复杂的算法,而且效率较低。因此,开发一种简单易用、高效准确的气象可视化系统迫在眉睫。

本研究的目的是提供一种高效、可扩展的气象数据处理方法。通过爬取气象数据,同时结合Python、Django框架和大数据技术,可以实现对大规模和高分辨率气象数据的快速处理和分析,提高气象数据分析的效率和精度。同时,本研究提供的可视化图表展示功能可以让用户直观地了解气象数据的分析结果,提高对天气变化的预测能力。这对气象预测、灾害预警等方面具有重要的实际应用价值。

基于大数据技术的气象数据分析和可视化在科学研究和实践应用中具有重要意义通过对大量气象数据的分析和可视化,可以有效预测和预警灾害性天气事件,提高灾害应对和减灾能力。气象可视化系统可以为农业生产提供准确的气候信息,帮助农民和决策者做出科学的农事决策,提高农作物产量和品质。通过对气象数据的分析和可视化,可以准确预测能源需求和供应,优化能源生产和消耗,提高能源利用效率。气象可视化系统可以帮助交通运输部门预测天气变化,优化交通路线和调度,提高交通运输的安全性和效率。

1.2 开发现状

随着气候变化和气象灾害的增加,对气象数据的分析和可视化需求越来越高。各国气象部门和研究机构已经开展了大量关于气象可视化系统的研究。

目前,气象数据分析的主要方法包括统计分析、数值模拟和机器学习。统计分析方法通过对历史气象数据的分析,提取规律和趋势,对未来气候进行预测。数值模拟方法使用数学模型来模拟和预测气象过程,通过对初始条件和边界条件的输入,得出未来的气象状态。机器学习方法则通过对大量气象数据的学习和训练,建立模型来预测未来的气象情况。

在气象可视化系统的应用方面,已经涉及到气象灾害预警、农业生产、城市规划等多个领域。比如,利用气象可视化系统来提前预警暴雨和台风等灾害,可以减少人员伤亡和财产损失;在农业生产中,可以利用气象数据来做出农事决策,提高农作物产量;在城市规划中,通过分析气象数据,可以合理规划城市防洪排涝设施等。

尽管已经有很多研究关于气象可视化系统,但仍然存在一些挑战和问题。首先,气象数据的获取和整理是一个复杂的过程,需要耗费大量的人力和物力。其次,气象数据的质量和可靠性也是一个重要的问题,错误的数据会导致错误的预测结果。此外,气候变化使得气象数据的模型和方法需要不断改进。

基于以上的研究现状和问题,本论文旨在设计和实现一个气象可视化系统,以提高气象数据的分析和可视化能力,服务于气象部门、农业生产和城市规划等领域。通过对气象数据的深入研究和应用,为气象预测和灾害预警等领域提供科学的决策支持,提高气象数据的分析和可视化能力,促进气象事业的发展。

1.3 主要内容

本研究将以Django框架为基础,结合大数据技术对气象数据进行分析和可视化。具体内容包括以下几个方面:

(1)数据采集与存储:使用Django框架实现气象数据的采集和存储,包括气象观测站数据、卫星遥感数据等。

(2)数据清洗与处理:通过大数据技术对采集到的气象数据进行清洗和处理,消除错误和无效数据。

(3)数据分析与预测:利用大数据技术对清洗后的气象数据进行分析和预测,包括气象事件的检测和趋势预测等。

(4)结果可视化展示:使用Django框架实现对气象数据分析结果的可视化展示,以便用户直观地了解气象数据的分析结果。

2 气象可视化系统系统分析

基于Python+Django的气象可视化系统可实现登陆注册、首页数据图表展示、通知预警、城市信息查看、日期数据爬取展示、天气分析、小时数据和风向分析等功能,相对于传统的天气播报方式,基于Python+Django的气象可视化系统提高了效率和便利性。在后台可对系统用户、通知预警管理、城市信息管理、日期数据管理、天气分析管理、小时数据管理、风向分析管理进行管理,充分了解用户的需求,更有针对性的服务用户。

2.1 可行性分析

系统可行性分析是在实施气象可视化系统系统或项目之前对其进行评估和探讨的过程。本论文旨在探讨系统可行性分析的重要性,并介绍了在技术、经济和法律层面上进行系统可行性分析的方法。通过系统可行性分析,可以有效地评估一个系统的可行性,减少实施过程中的风险并提高成功的概率。

2.1.1 技术可行性分析

基于Python+Django的气象可视化系统的开发中,我们使用了MySQL数据库作为数据存储,并借助IDEA、Tomcat等开发工具来提高开发效率和便利性。MySQL作为可靠的关系型数据库管理系统,能够高效地存储和管理系统所需的各种数据。IDEA作为开发工具,提供了丰富的功能和友好的开发环境,帮助我们更好地进行代码编写和调试。以Django框架为基础,结合大数据和爬虫技术,对气象数据进行分析和可视化。

2.1.2 经济可行性分析

在开发基于Python+Django的气象可视化系统时,我们选择了一些开源免费的开发软件和技术,如IDEA开发工具、Tomcat 8.0服务器、MySQL 5.7数据库以及Photoshop图片处理软件。这些工具和技术的使用不仅提供了强大的功能和便捷的开发环境,而且还能够降低系统开发成本。通过使用IDEA进行编码和调试,Tomcat作为服务器进行部署,MySQL作为数据存储解决方案,以及Photoshop进行界面设计和图片处理,我们能够自主设计并实现校园地图导览系统。而采用开源的MySQL等技术,不仅保证了系统的稳定性和可靠性,还有效地降低了开发成本。

2.1.3 法律可行性分析

基于Python+Django的气象可视化系统的实施过程中,需要遵守相关的法律法规和数据安全政策,确保符合规定的标准和要求。因此,进行合规性评估,以确保系统在法律与政策层面的可行性。综上所述法律可行性也没有问题。

2.2 系统功能分析

2.2.1 功能性分析

基于Python+Django的气象可视化系统可以划分为普通用户模块和管理员模块两大部分。普通用户模块包括用户注册登录、查看系统首页统计图表展示、通知预警、城市信息、日期数据、天气分析、小时数据、风向分析等功能。管理员模块包括登录、系统用户、通知预警管理、城市信息管理、日期数据管理、天气分析管理、小时数据管理和风向分析管理等功能。

在普通用户模块中,用户可以查看系统发布的通知预警和城市信息的详情,通知查询了解自己想要查看的信息详情。用户还可以查看日期数据、天气分析、小时数据和风向分析等信息,以及展示在首页的统计图表。此外,用户还可以管理个人账户信息,修改个人信息和登录密码。

管理员模块提供了登录功能,并可对系统用户进行管理,包括管理员和普通用户。管理员可以管理通知预警信息,支持查询和添加新的通知预警数据。管理员还可以管理城市信息,同样支持查询和添加新的数据。此外,管理员还可以管理日期数据和小时数据,通过下载导入文档,将已经爬取和清洗好的数据存至导入文档,点击导入完成。同时可以对日期数据进行天气分析,对小时数据进行风向分析。

通过以上功能划分,这个气象可视化系统可以提供给用户一个方便浏览城市气象信息、及时收到通知预警的平台。管理员可以对系统进行用户管理、信息数据管理、统计管理和系统内容管理等操作。这样的系统可以提升用户体验,并为管理员提供更好的管理效率。

以上论文主题的描述中没有提及具体的技术实现细节,因此在进一步研究中,可以探讨关于气象管理及推荐算法、用户交互设计、系统安全性等方面的内容。同时,在实际开发中,需要考虑系统的可扩展性、性能优化和用户隐私保护等问题。

2.2.2 非功能性分析

基于Python+Django的气象可视化系统需要具备可靠性、可用性、性能、扩展性、安全性、隐私保护、灵活性、适应性、可维护性、可扩展性、兼容性和互操作性等非功能性特征。系统应在长时间运行中保持稳定,用户界面简洁直观;具备高效的数据处理和响应速度;采取安全措施保护用户信息;根据用户反馈调整推荐算法;方便用户进行天气分类、搜索和排序;易于维护和管理,支持与其他系统互操作。设计和开发过程中需注重这些要求,以提供高质量、用户友好和可信赖的系统体验。

2.3 系统用例分析

气象可视化系统的完整UML用例图分别是图2-1和2-2。

图2-1就是普通用户角色的用例展示。

图2-1 气象可视化系统普通用户角色用例图

图2-2就是管理员角色的用例展示。

图2-2 气象可视化系统管理员角色用例图

2.4 系统业务流程分析

气象可视化系统的工作流程分为管理员权限和用户权限两部分。在管理员权限下,管理员通过系统界面登录,并进入后台系统,可以进行系统用户、通知预警管理、城市信息管理、日期数据管理、天气分析管理、小时数据管理、风向分析管理等操作。而在用户权限下,用户通过注册功能进行身份验证并完成注册,然后通过登录界面进行个人身份验证,进入个人后台界面,可以查看个人信息、浏览通知预警、城市信息、日期数据、太难起分析、小时数据和风向分析等信息。管理员通过填写账户和密码登录后台系统,用户则通过注册和登录来进入个人后台界面。这些工作流程使得管理员和用户能够方便地使用系统,浏览气象信息,并根据自己的需求进行相应的操作。具体实现中可能会有更多细节和复杂性,需要根据实际情况进行设计和开发。通过气象可视化系统的工作流程,用户可以轻松获取所需的气象信息,管理员可以高效地管理系统数据和功能。

图2-3系统业务流程图

2.5本章小结

本章主要通过对气象可视化系统的可行性分析、功能需求分析、系统用例分析和系统流程分析,确定了该系统所需实现的功能。这些分析结果为气象可视化系统的代码实现和测试提供了标准和指导。可行性分析考虑了技术、经济和法律上的可行性,确保系统的实施可行;功能需求分析明确了系统需要实现的功能模块和具体要求;系统用例分析细化了系统功能,并定义了参与者、前置条件和基本流程;系统流程分析详细揭示了系统的运行流程和数据流动路径。这些分析结果为开发团队提供了明确的目标和指导,可以根据需求逐步实现各个功能模块,并在测试阶段验证系统是否满足预期要求。同时,分析结果也为未来的系统扩展和升级提供了基础和参考依据。

3 气象可视化系统总体设计

3.1 系统功能模块设计

在上一章节中分析了基于Python+Django的气象可视化系统的功能性需求,并且根据需求分析了基于Python+Django的气象可视化系统中的用例。那么接下来就要开始对基于Python+Django的气象可视化系统架构、主要功能和数据库开始进行设计。其总体设计模块图如图3-1所示。

图3-1 气象可视化系统功能模块图

3.2 数据库设计

数据库设计一般包括需求分析、概念模型设计和逻辑结构设计三个主要过程。在需求分析阶段,明确系统对数据库的具体需求。概念模型设计将需求转化为概念模型,抽象出现实世界中的概念和关系。逻辑结构设计则是在概念模型的基础上,将概念模型转化为数据库中的具体表和关系的设计。这包括确定表的名称、字段、约束等,并定义主外键关系、索引、触发器等。通过需求分析、概念模型设计和逻辑结构设计,可以建立一个合理的数据库设计,为系统提供稳定、高效和可靠的数据管理和访问功能。这些过程相互衔接,确保数据库能够满足系统需求并有效地存储和操作数据。

3.2.1 数据库概念结构设计

下面是整个气象可视化系统中主要的数据库表总E-R实体关系图。

图3-6 气象可视化系统总E-R关系图

3.2.2 数据库逻辑结构设计

通过上一小节中气象可视化系统中总E-R关系图上得出一共需要创建很多个数据表。在此我主要罗列几个主要的数据库表结构设计。

表access_token (登陆访问时长)

编号

名称

数据类型

长度

小数位

允许空值

主键

默认值

说明

1

token_id

int

10

0

N

Y

临时访问牌ID

2

token

varchar

64

0

Y

N

临时访问牌

3

info

text

65535

0

Y

N

4

maxage

int

10

0

N

N

2

最大寿命:默认2小时

5

create_time

timestamp

19

0

N

N

CURRENT_TIMESTAMP

创建时间:

6

update_time

timestamp

19

0

N

N

CURRENT_TIMESTAMP

更新时间:

7

user_id

int

10

0

N

N

0

用户编号:

表auth (用户权限管理)

编号

名称

数据类型

长度

小数位

允许空值

主键

默认值

说明

1

auth_id

int

10

0

N

Y

授权ID:

2

user_group

varchar

64

0

Y

N

用户组:

3

mod_name

varchar

64

0

Y

N

模块名:

4

table_name

varchar

64

0

Y

N

表名:

5

page_title

varchar

255

0

Y

N

页面标题:

6

path

varchar

255

0

Y

N

路由路径:

7

position

varchar

32

0

Y

N

位置:

8

mode

varchar

32

0

N

N

_blank

跳转方式:

9

add

tinyint

3

0

N

N

1

是否可增加:

10

del

tinyint

3

0

N

N

1

是否可删除:

11

set

tinyint

3

0

N

N

1

是否可修改:

12

get

tinyint

3

0

N

N

1

是否可查看:

13

field_add

text

65535

0

Y

N

添加字段:

14

field_set

text

65535

0

Y

N

修改字段:

15

field_get

text

65535

0

Y

N

查询字段:

16

table_nav_name

varchar

500

0

Y

N

跨表导航名称:

17

table_nav

varchar

500

0

Y

N

跨表导航:

18

option

text

65535

0

Y

N

配置:

19

create_time

timestamp

19

0

N

N

CURRENT_TIMESTAMP

创建时间:

20

update_time

timestamp

19

0

N

N

CURRENT_TIMESTAMP

更新时间:

表city_information (城市信息)

编号

名称

数据类型

长度

小数位

允许空值

主键

默认值

说明

1

city_information_id

int

10

0

N

Y

城市信息ID

2

city_name

varchar

64

0

Y

N

城市名称

3

urban_area

varchar

64

0

Y

N

城市面积

4

city_location

varchar

64

0

Y

N

城市位置

5

city_description

text

65535

0

Y

N

城市描述

6

remarks

text

65535

0

Y

N

备注信息

7

create_time

datetime

19

0

N

N

CURRENT_TIMESTAMP

创建时间

8

update_time

timestamp

19

0

N

N

CURRENT_TIMESTAMP

更新时间

表date_data (日期数据)

编号

名称

数据类型

长度

小数位

允许空值

主键

默认值

说明

1

date_data_id

int

10

0

N

Y

日期数据ID

2

weather_date

varchar

64

0

Y

N

天气日期

3

weather_condition

varchar

64

0

Y

N

天气情况

4

minimum_temperature

varchar

64

0

Y

N

最低气温

5

maximum_temperature

varchar

64

0

Y

N

最高气温

6

wind_direction_of_the_day_1

varchar

64

0

Y

N

当天风向1

7

wind_direction_of_the_day_2

varchar

64

0

Y

N

当天风向2

8

wind_level_of_the_day

varchar

64

0

Y

N

当天风级

9

create_time

datetime

19

0

N

N

CURRENT_TIMESTAMP

创建时间

10

update_time

timestamp

19

0

N

N

CURRENT_TIMESTAMP

更新时间

表hits (用户点击)

编号

名称

数据类型

长度

小数位

允许空值

主键

默认值

说明

1

hits_id

int

10

0

N

Y

点赞ID:

2

user_id

int

10

0

N

N

0

点赞人:

3

create_time

timestamp

19

0

N

N

CURRENT_TIMESTAMP

创建时间:

4

update_time

timestamp

19

0

N

N

CURRENT_TIMESTAMP

更新时间:

5

source_table

varchar

255

0

Y

N

来源表:

6

source_field

varchar

255

0

Y

N

来源字段:

7

source_id

int

10

0

N

N

0

来源ID:

表hourly_data (小时数据)

编号

名称

数据类型

长度

小数位

允许空值

主键

默认值

说明

1

hourly_data_id

int

10

0

N

Y

小时数据ID

2

hour_time

varchar

64

0

Y

N

小时时间

3

hourly_temperature

varchar

64

0

Y

N

小时温度

4

wind_direction

varchar

64

0

Y

N

风力方向

5

hourly_wind_level

varchar

64

0

Y

N

小时风级

6

hourly_precipitation

varchar

64

0

Y

N

小时降水

7

relative_humidity

varchar

64

0

Y

N

相对湿度

8

air_quality

varchar

64

0

Y

N

空气质量

9

create_time

datetime

19

0

N

N

CURRENT_TIMESTAMP

创建时间

10

update_time

timestamp

19

0

N

N

CURRENT_TIMESTAMP

更新时间

表notification_warning (通知预警)

编号

名称

数据类型

长度

小数位

允许空值

主键

默认值

说明

1

notification_warning_id

int

10

0

N

Y

通知预警ID

2

warning_number

varchar

64

0

Y

N

预警编号

3

warning_title

varchar

64

0

Y

N

预警标题

4

warning_date

date

10

0

Y

N

预警日期

5

warning_image

varchar

255

0

Y

N

预警图片

6

warning_content

text

65535

0

Y

N

预警内容

7

create_time

datetime

19

0

N

N

CURRENT_TIMESTAMP

创建时间

8

update_time

timestamp

19

0

N

N

CURRENT_TIMESTAMP

更新时间

表regular_users (普通用户)

编号

名称

数据类型

长度

小数位

允许空值

主键

默认值

说明

1

regular_users_id

int

10

0

N

Y

普通用户ID

2

user_name

varchar

64

0

Y

N

用户姓名

3

user_gender

varchar

64

0

Y

N

用户性别

4

contact_phone_number

varchar

16

0

Y

N

联系电话

5

examine_state

varchar

16

0

N

N

已通过

审核状态

6

user_id

int

10

0

N

N

0

用户ID

7

create_time

datetime

19

0

N

N

CURRENT_TIMESTAMP

创建时间

8

update_time

timestamp

19

0

N

N

CURRENT_TIMESTAMP

更新时间

表upload (文件上传)

编号

名称

数据类型

长度

小数位

允许空值

主键

默认值

说明

1

upload_id

int

10

0

N

Y

上传ID

2

name

varchar

64

0

Y

N

文件名

3

path

varchar

255

0

Y

N

访问路径

4

file

varchar

255

0

Y

N

文件路径

5

display

varchar

255

0

Y

N

显示顺序

6

father_id

int

10

0

Y

N

0

父级ID

7

dir

varchar

255

0

Y

N

文件夹

8

type

varchar

32

0

Y

N

文件类型

表user (用户账户:用于保存用户登录信息)

编号

名称

数据类型

长度

小数位

允许空值

主键

默认值

说明

1

user_id

mediumint

8

0

N

Y

用户ID:[0,8388607]用户获取其他与用户相关的数据

2

state

smallint

5

0

N

N

1

账户状态:[0,10](1可用|2异常|3已冻结|4已注销)

3

user_group

varchar

32

0

Y

N

所在用户组:[0,32767]决定用户身份和权限

4

login_time

timestamp

19

0

N

N

CURRENT_TIMESTAMP

上次登录时间:

5

phone

varchar

11

0

Y

N

手机号码:[0,11]用户的手机号码,用于找回密码时或登录时

6

phone_state

smallint

5

0

N

N

0

手机认证:[0,1](0未认证|1审核中|2已认证)

7

username

varchar

16

0

N

N

用户名:[0,16]用户登录时所用的账户名称

8

nickname

varchar

16

0

Y

N

昵称:[0,16]

9

password

varchar

64

0

N

N

密码:[0,32]用户登录所需的密码,由6-16位数字或英文组成

10

email

varchar

64

0

Y

N

邮箱:[0,64]用户的邮箱,用于找回密码时或登录时

11

email_state

smallint

5

0

N

N

0

邮箱认证:[0,1](0未认证|1审核中|2已认证)

12

avatar

varchar

255

0

Y

N

头像地址:[0,255]

13

open_id

varchar

255

0

Y

N

针对获取用户信息字段

14

create_time

timestamp

19

0

N

N

CURRENT_TIMESTAMP

创建时间:

15

vip_level

varchar

255

0

Y

N

会员等级

16

vip_discount

double

11

2

Y

N

0.00

会员折扣

表user_group (用户组:用于用户前端身份和鉴权)

编号

名称

数据类型

长度

小数位

允许空值

主键

默认值

说明

1

group_id

mediumint

8

0

N

Y

用户组ID:[0,8388607]

2

display

smallint

5

0

N

N

100

显示顺序:[0,1000]

3

name

varchar

16

0

N

N

名称:[0,16]

4

description

varchar

255

0

Y

N

描述:[0,255]描述该用户组的特点或权限范围

5

source_table

varchar

255

0

Y

N

来源表:

6

source_field

varchar

255

0

Y

N

来源字段:

7

source_id

int

10

0

N

N

0

来源ID:

8

register

smallint

5

0

Y

N

0

注册位置:

9

create_time

timestamp

19

0

N

N

CURRENT_TIMESTAMP

创建时间:

10

update_time

timestamp

19

0

N

N

CURRENT_TIMESTAMP

更新时间:

表weather_analysis (天气分析)

编号

名称

数据类型

长度

小数位

允许空值

主键

默认值

说明

1

weather_analysis_id

int

10

0

N

Y

天气分析ID

2

weather_date

varchar

64

0

Y

N

天气日期

3

weather_condition

varchar

64

0

Y

N

天气情况

4

minimum_temperature

varchar

64

0

Y

N

最低气温

5

maximum_temperature

varchar

64

0

Y

N

最高气温

6

wind_level_of_the_day

varchar

64

0

Y

N

当天风级

7

analysis_remarks

varchar

64

0

Y

N

分析备注

8

create_time

datetime

19

0

N

N

CURRENT_TIMESTAMP

创建时间

9

update_time

timestamp

19

0

N

N

CURRENT_TIMESTAMP

更新时间

表wind_direction_analysis (风向分析)

编号

名称

数据类型

长度

小数位

允许空值

主键

默认值

说明

1

wind_direction_analysis_id

int

10

0

N

Y

风向分析ID

2

hour_time

varchar

64

0

Y

N

小时时间

3

hourly_temperature

varchar

64

0

Y

N

小时温度

4

wind_direction

varchar

64

0

Y

N

风力方向

5

hourly_wind_level

varchar

64

0

Y

N

小时风级

6

analysis_remarks

varchar

64

0

Y

N

分析备注

7

create_time

datetime

19

0

N

N

CURRENT_TIMESTAMP

创建时间

8

update_time

timestamp

19

0

N

N

CURRENT_TIMESTAMP

更新时间

3.3本章小结

整个气象可视化系统的需求分析主要对系统总体架构以及功能模块的设计,通过建立E-R模型和数据库逻辑系统设计完成了数据库系统设计。

4 气象可视化系统详细设计与实现

气象可视化系统的详细设计与实现主要基于前面的需求分析和总体设计。它包括页面设计和业务逻辑的具体实现。在界面实现方面,根据系统功能和用户需求,设计各个页面的布局和界面,包括用户界面和管理员界面,并采用响应式设计确保在不同设备上的正常显示。在业务逻辑实现方面,根据用户和管理员模块的需求,实现注册、登录、信息管理、统计图表展示等功能,并设计数据库表结构和操作代码。通过适当的测试和调试,确保系统稳定、安全、高效地运行,满足用户和管理员的需求。通过详细设计和实现,气象可视化系统能够提供良好的用户体验和有效的天气管理与推荐功能。

4.1 后台首页界面

当进入用户和管理员气象可视化系统时,其后台首页都会展示其统计图表,包括日期数据统计、天气分析统计、小时数据统计和风向分析统计图表。其后台首页展示如下图4-1所示。

图4-1 后台首页界面图

4.2 用户注册界面

用户注册界面是气象可视化系统中的重要组成部分。该界面包含一个注册表单,其中用户需要填写用户名、密码、确认密码、电子邮箱和手机号码等信息。为了确保安全性,还可以添加验证码字段。用户需要勾选同意系统的用户协议和隐私政策才能继续注册。注册过程中,系统应提供错误提示,及时指出输入信息的错误或不完整,并引导用户进行修正。通过这样的设计,用户可以方便地填写个人信息并完成注册,同时确保注册过程的安全和准确性。其用用户注册界面展示如下图4-2所示。

图4-2注册界面图 

注册关键代码如下:

  def Register(self, ctx):

        print("===================注册=====================")

        userService = service_select("user")

        body = ctx.body

        if "username" not in body and body["username"] == '':

            return ctx.response(json.dumps({

                "error": {

                    "code": 70000,

                    "message": "用户名不能为空",

                }

            }, ensure_ascii=False))

        if "user_group" not in body and body["user_group"] == '':

            return ctx.response(json.dumps({

                "error": {

                    "code": 70000,

                    "message": "用户组不能为空",

                }

            }, ensure_ascii=False))

        if "password" not in body and body["password"] == '':

            return ctx.response(json.dumps({

                "error": {

                    "code": 70000,

                    "message": "密码不能为空",

                }

            }, ensure_ascii=False))

        post_param = body

        post_param['nickname'] = body["nickname"] or ""

        post_param['password'] = md5hash(body["password"])

        obj = userService.Get_obj({"username": post_param['username']}, {"like": False})

        if obj:

            return ctx.response(json.dumps({

                "error": {

                    "code": 70000,

                    "message": "用户名已存在",

                }

            }, ensure_ascii=False))

        ret = {

            "error": {

                "code": 70000,

                "message": "注册失败",

            }

        }

        bl = userService.Add(post_param)

        if bl:

            ret = {

                "result": {

                    "bl": True,

                    "message": "注册成功"

                }

            }

        return ctx.response(json.dumps(ret, ensure_ascii=False))

4.3 用户登录界面

用户登录界面是系统中的重要模块。该界面提供了账号和密码输入框,用户需在这些输入框中填写正确的信息进行登录。登录按钮用于触发验证流程,系统将对用户输入的账号和密码进行认证。如果验证成功,用户将进入系统主界面;如果验证失败,系统将显示错误信息并提示用户重新输入。为方便新用户注册,登录界面通常还提供注册链接;而忘记密码链接则用于找回密码。此外,登录界面可能包含其他辅助功能,如记住密码和自动登录,用户登录界面如下图4-3所示。

图4-3用户登录界面图

登录的逻辑代码如下所示:

   def Login(self, ctx):

        print("===================登录=====================")

        ret = {

            "error": {

                "code": 70000,

                "message": "账户不存在",

            }

        }

        body = ctx.body

        password = md5hash(body["password"]) or ""

        obj = service_select("user").Get_obj(

            {"username": body["username"]}, {"like": False}

        )

        if obj:

            user_group = service_select("user_group").Get_obj({'name': obj['user_group']}, {"like": False})

            if user_group and user_group['source_table'] != '':

                user_obj = service_select(user_group['source_table']).Get_obj({"user_id": obj['user_id']},                                                                       {"like": False})

                if user_obj['examine_state'] == '未通过':

                    ret = {

                        "error": {

                            "code": 70000,

                            "message": "账户未通过审核",

                        }

                    }

                    return ret

                if user_obj['examine_state'] == '未审核':

                    ret = {

                        "error": {

                            "code": 70000,

                            "message": "账户未审核",

                        }

                    }

                    return ret

            if obj["state"] == 1:

                if obj["password"] == password:

                    timeout = timezone.now()

                    timestamp = int(time.mktime(timeout.timetuple())) * 1000

                    token = md5hash(str(obj["user_id"]) + "_" + str(timestamp))

                    ctx.request.session[token] = obj["user_id"]

                    service_select("access_token").Add(

                        {"token": token, "user_id": obj["user_id"]}

                    )

                    obj["token"] = token

                    ret = {

                        "result": {"obj": obj}

                    }

                else:

                    ret = {

                        "error": {

                            "code": 70000,

                            "message": "密码错误",

                        }

                    }

            else:

                ret = {

                    "error": {

                        "code": 70000,

                        "message": "用户账户不可用,请联系管理员",

                    }

                }

        return ctx.response(json.dumps(ret, ensure_ascii=False))

4.4 通知预警管理界面

管理员执行通知预警管理,并可以操作相关内容,管理员可以添加通知预警信息,包括预警编号 、预警标题、预警日期、预警图片、预警内容等信息的展示,用户则是执行对通知预警的查询与详情查看。通知预警添加界面如下图4-4所示。

图4-4通知预警添加界面图

查询通知预警信息关键代码如下:

def Get_obj(self, ctx):

query = dict(ctx.query)

config_plus = {}

if "field" in query:

field = query.pop("field")

config_plus["field"] = field

obj = self.service.Get_obj(query, obj_update(self.config, config_plus))

if self.service.error:

return {"error": self.service.error}

if obj:

self.interact_obj(ctx, obj)

return {"result": {"obj": obj}}

4.5 城市信息管理界面

管理员执行城市信息管理,并可以操作相关内容,管理员可以添加城市信息,用户则是执行对城市信息的查询与详情查看。用户城市信息管理界面如下图4-5所示。

图4-5城市信息管理界面图

4.6 日期数据管理界面

管理员执行日期数据管理,并可以操作相关内容,管理员首先通过爬虫和数据清洗获取各日期的天气数据,然后在日期数据列表界面下载导入文档另存为文件,按照文档上面的格式进行添加天气数据,最后点击导入按钮导入数据,生成最新城市日期数据信息。可以对日期数据进行天气分析信息的添加。日期数据管理界面如下图4-6所示。

图4-6日期数据管理界面图

日期数据管理关键代码如下:

def Get_list(self, ctx):

query = dict(ctx.query)

config_plus = {}

if "field" in query:

field = query.pop("field")

config_plus["field"] = field

if "page" in query:

config_plus["page"] = query.pop("page")

if "size" in query:

config_plus["size"] = query.pop("size")

if "orderby" in query:

config_plus["orderby"] = query.pop("orderby")

if "like" in query:

config_plus["like"] = query.pop("like")

if "groupby" in query:

config_plus["groupby"] = query.pop("groupby")

count = self.service.Count(query)

lst = []

if self.service.error:

return {"error": self.service.error}

elif count:

lst = self.service.Get_list(query,

obj_update(self.config, config_plus))

if self.service.error:

return {"error": self.service.error}

self.interact_list(ctx, lst)

return {"result": {"list": lst, "count": count}}

天气分析添加界面如下图4-7所示。

图4-7天气分析添加界面图

4.7 小时数据管理界面

管理员执行小时数据管理,并可以操作相关内容,管理员首先通过爬虫和数据清洗获取每小时的天气数据,然后在小时数据列表界面下载导入文档另存为文件,按照文档上面的格式进行添加天气数据,最后点击导入按钮导入数据,生成最新小时数据信息。可以对小时数据进行风向分析信息的添加。小时数据导入界面如下图4-8所示。

图4-8小时数据导入界面图

风向分析添加界面如下图4-9所示。

图4-9风向分析添加界面图

添加风向分析关键代码如下:

def Add(self, ctx):

body = ctx.body

unique = self.config.get("unique")

obj = None

if unique:

qy = {}

for i in range(len(unique)):

key = unique[i]

qy[key] = body.get(key)

obj = self.service.Get_obj(qy)

if not obj:

error = self.Add_before(ctx)

if error["code"]:

return {"error": error}

error = self.Events("add_before", ctx, None)

if error["code"]:

return {"error": error}

result = self.service.Add(body, self.config)

if self.service.error:

return {"error": self.service.error}

res = self.Add_after(ctx, result)

if res:

result = res

res = self.Events("add_after", ctx, result)

if res:

result = res

return {"result": result}

else:

return {"error": {"code": 10000, "message": "已存在"}}

5系统测试

5.1 系统测试用例

系统测试是软件开发过程中必不可少的环节之一,它旨在验证整个软件系统是否满足需求规格说明书定义的要求。对于气象可视化系统而言,我们主要进行功能测试,以下是部分功能的测试用例:

添加通知预警测试用例:

功能名称

测试用例

预期结果

实际结果

通过情况

通知预警添加功能

通知预警添加页输入:预警编号 、预警标题、预警日期、预警图片、预警内容

详情,点击提交

提交成功,用户页面、后台通知预警列表展示该信息

提交成功,用户页面、后台通知预警列表展示该信息

通过

下载导入文档测试用例:

功能名称

测试用例

预期结果

实际结果

通过情况

下载导入文档功能

日期数据信息列表点击下载导入文档,选择文档保存的路径,点击确定

文档数据下载成功,保存路径下存储该文档

文档数据下载成功,保存路径下存储该文档

通过

导入日期数据文档测试用例:

功能名称

测试用例

预期结果

实际结果

通过情况

导入日期数据文档功能

日期数据信息列表点击导入,选择要导入的文档,点击确定

导入成功,选择的文档数据展示在列表中,前端也展示对应的日期数据信息

导入成功,选择的文档数据展示在列表中,前端也展示对应的日期数据信息

通过

删除日期数据测试用例:

功能名称

测试用例

预期结果

实际结果

通过情况

删除日期数据功能

勾选多个日期数据数据,点击删除,确认删除

提示删除成功,前、后台不在显示该日期数据信息

提示删除成功,前、后台不在显示该日期数据信息

通过

修改日期数据测试用例:

模块名称

测试用例

预期结果

实际结果

通过情况

修改日期数据功能

选择日期数据城市名称:日本,点击详情,修改水产名称:东京,点击提交

提示修改成功,日期数据城市从日本改成东京

提示修改成功,日期数据城市从日本改成东京

通过

5.2 系统测试结果

通过编写气象可视化系统的测试用例,对通知预警的添加、日期数据的删除、修改、下载导入文档、导入等功能进行增删改流程。测试验证,整个系统的测试验证通过,为系统的后期推广运营提供了强力的技术支撑。

通过这些测试,气象可视化系统在后期推广运营中具备了可靠的技术支持,为用户提供良好的使用体验,并为系统的发展打下了坚实的基础。

结论

基于爬虫技术、大数据分析、Django和Python的气象可视化系统具有巨大的潜力和商业价值。通过大数据分析技术,系统能够提供个性化、精准的城市天气可视化,提升用户体验和满意度。同时,系统还具备高效、稳定和可扩展的特点,为天气预报行业的发展和创新带来了巨大的潜力。未来,我们可以进一步引入更多的数据源,探索新的算法和模型,实现多维度的推荐,鼓励用户参与和互动,并在多平台上进行开发和部署。通过不断优化和创新,这样的系统将为用户带来更好的天气观影体验,帮助天气行业发现新的市场机会和优化运营策略。总之,基于技术如Django和Python的气象可视化系统在气象行业具有广阔的发展前景,我们期待着它在未来为用户和气象行业带来更大的价值和影响力。

参考文献

[1]赵星.大数据支持下的农机作业数据挖掘与决策分析技术研究[J].南方农机,2024,55(05):182-184.

[2]Rostami M ,Mignacca G S ,Bucking S .Weather data analysis and building performance assessment during extreme climate events: A Canadian AMY weather file data set[J].Data in Brief,2024,52110036-.

[3]胡贤,霍怡雨.基于大数据技术的计算机网络信息安全防护对策分析[J].电子技术,2024,53(01):390-392.

[4]李一帆,梁继元.基于大数据技术的风光互补储能系统优化控制分析[J].电子技术,2024,53(01):240-241.

[5]屈峰.基于时间序列分析的气象观测数据预测[J].长江信息通信,2024,37(01):36-39.DOI:10.20153/j.issn.2096-9759.2024.01.011.

[6]F H P F ,S J J ,Francesco T , et al.Genomic predictions and GWAS for heat tolerance in pigs based on reaction norm models with performance records and data from public weather stations considering alternative temperature thresholds.[J].Journal of animal breeding and genetics = Zeitschrift fur Tierzuchtung und Zuchtungsbiologie,2023,

[7]梁燮凡,谭喆,保鸿燕等.基于数据驱动的气象灾害自动化监测预测模型设计[J].自动化与仪表,2023,38(10):11-15.DOI:10.19557/j.cnki.1001-9944.2023.10.003.

[8]Harsh B ,Lata G .Real-time weather data analysis by the solar fuzzy logic-based MPPT controller[J].Proceedings of the Indian National Science Academy,2023,89(4):924-940.

[9]Marius F ,Philipp D .Analysis of weather balloon data to evaluate the aerodynamic influence on the launch phase of SHEFEX II[J].CEAS Space Journal,2023,15(6):881-894.

[10]林孔杰,陈云,郭昌松等.基于“知天气”APP数据全流程的移动端监控系统设计[J].科技与创新,2023,(17):89-91.DOI:10.15913/j.cnki.kjycx.2023.17.025.

[11]席小青,彭河山,黄家骥.基于气象数据的太阳辐照度预测方法[J].江西电力职业技术学院学报,2023,36(07):4-7.

[12]窦世标,付乃锋,涂宏京等.GPS/PWV与第五代大气再分析数据的短时强降水分析[J].测绘科学,2023,48(07):46-53.DOI:10.16251/j.cnki.1009-2307.2023.07.007.

[13]喇玉先,肖莲桂,杨华.青海省自动气象站数据可用性影响因素分析及质量提升策略[J].青海科技,2023,30(03):171-176.

[14]果泽泉,蒋雅玲.基于大数据分析的城市热网负荷综合预测研究[J].能源工程,2022,42(06):80-85.DOI:10.16189/j.cnki.nygc.2022.06.011.

[15]王凌云,田恬,童华敏.基于气象数据可视化降维和多模加权组合的短期负荷预测[J].信息与控制,2022,51(06):741-752+762.DOI:10.13976/j.cnki.xk.2022.1520.

[16]胡光亮.基于形势场数据的智能气象预测与分析[D].沈阳工业大学,2022.DOI:10.27322/d.cnki.gsgyu.2022.001182.

[17]王莉萍,崔晓冬.衡水市棉铃虫发生的气象条件分析及预测[J].衡水学院学报,2021,23(04):16-20.

[18]王舒韵,满晓雪,安婧等.基于大数据气象灾害预测分析[J].电子元器件与信息技术,2021,5(01):70-73.DOI:10.19772/j.cnki.2096-4455.2021.1.032.

[19]许欢,朱华亮,温华洋.基于ISOMAP与Adaptive-Lasso的日平均气温预测模型[J].安庆师范大学学报(自然科学版),2020,26(03):38-42.DOI:10.13757/j.cnki.cn34-1328/n.2020.03.008.

[20]张晶晶,曲雅婷,谢金鑫等.基于EMD的多尺度混合模型及在气象数据中的应用[J].宁波工程学院学报,2020,32(02):21-26.

 谢

基于Python+Django的气象可视化系统能够为用户提供个性化、准确的城市天气推荐,提升用户体验。通过收集和分析用户的历史行为、偏好和评价等数据,系统能够了解用户的喜好,并根据推荐算法智能推荐。

在本次基于Python+Django的气象可视化系统的设计和实现过程中,我们要向所有参与其中的团队成员表示衷心的感谢。你们的辛勤努力和专业知识为项目的成功做出了重要贡献。我们还要感谢所有对我们项目给予支持和鼓励的人。你们的信任和鼓励是我们不断前进的动力,让我们坚定地追求卓越和创新。

同时,我们要感谢所有测试人员和用户,你们的反馈和意见帮助我们不断改进和完善系统。你们的参与使得我们的产品更加符合用户需求,真正实现了以用户为中心的设计理念。

最后,我们要感谢团队内外的每个人,正是你们的合作、支持和奉献,才使得这个项目取得了如此令人瞩目的成果。我们相信,在未来的道路上,我们将继续携手并进,共同创造更加美好的明天。让我们保持积极的态度,不断追求卓越,相信自己的能力,勇敢面对挑战,再次感谢大家的辛勤付出和支持!

点赞+收藏+关注 → 私信领取本源代码、数据库

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值