自动文本摘要综述
文章平均质量分 94
yuyuyu_xxx
这个作者很懒,什么都没留下…
展开
-
NLP论文阅读记录 - 2021 | WOS 使用分层多尺度抽象建模和动态内存进行抽象文本摘要
在本文中,我们提出了一种新颖的抽象文本摘要方法,具有分层多尺度抽象建模和动态记忆(称为 MADY)。首先,我们提出了一种分层多尺度抽象建模方法,从多个抽象层次中捕获文档的时间依赖性,该方法通过学习低级抽象层的精细时间尺度和粗略时间尺度来模仿人类如何理解文章的过程。高级抽象层的时间尺度。通过应用这种自适应更新机制,高级抽象层的更新频率较低,并且期望比低级抽象层更好地记住长期依赖关系。其次,我们提出了一个动态键值记忆增强注意力网络来跟踪输入文档中显着方面的注意力历史和综合上下文信息。原创 2024-01-14 22:49:20 · 859 阅读 · 0 评论 -
NLP论文阅读记录 - 05 | 2023 抽象总结与提取总结:实验回顾
codepaper尽管最近的一些作品显示了不同最先进系统之间潜在的互补性,但很少有作品尝试研究文本摘要中的这个问题。其他领域的研究人员通常会参考重新排序或堆叠技术来解决这个问题。在这项工作中,我们强调了以前方法的一些局限性,这促使我们提出一个新的框架 Refactor,它提供了文本摘要和摘要组合的统一视图。在实验上,我们进行了涉及 22 个基础系统、4 个数据集和 3 个不同应用场景的综合评估。原创 2024-01-11 20:50:28 · 1051 阅读 · 0 评论 -
NLP论文阅读记录 -04 | 基于深度学习的抽象文本摘要综述
用于神经文本生成的 Best-k 搜索算法(2211)codepaper。原创 2023-12-19 19:47:53 · 962 阅读 · 0 评论 -
NLP论文阅读记录 - 01 | 2021 神经抽象摘要方法及摘要事实一致性综述
自动摘要是通过计算缩短一组文本数据的过程,以创建代表原始文本中最重要信息的子集(摘要)。现有的摘要方法大致可以分为两种:抽取式和抽象式。提取摘要器显式地从源文档中选择文本片段(单词、短语、句子等),而抽象摘要器则生成新颖的文本片段以传达源文档中最常见的最显着的概念。本次综述的目的是对最先进的抽象概括方法进行彻底的调查,并讨论这些方法面临的一些挑战。我们专注于抽象摘要任务,因为它在计算上比提取方法更具挑战性,并且更接近人类编写摘要的方式。本次调查分为两个部分。原创 2023-12-27 20:10:01 · 1013 阅读 · 0 评论