企业搜索引擎对于绝大部分企业或者员工来说都是一个熟悉且陌生的词,熟悉是因为搜索引擎(百度、谷歌、360等)常用,陌生是因为没有见过【企业搜索引擎】。
以下【搜索引擎】特质百度等个人用户端;【企业搜索引擎】特质企业内搜索引擎。
当下搜索引擎在企业侧的应用:
对于当下大家熟悉的搜索引擎,企业内员工常见的使用原因举例:
- 特定部门
营销部门:通过搜索引擎做企业推广,以百度营销为代表;
销售部门:通过搜索引擎查询客户公司信息,以及了解客户业务情况等;
研发部门:通过搜索引擎了解竞争对手情况,查询开源项目代码等;
采购部门:通过搜索引擎寻找采购物品供应商及相关供应商情况;
其它
- 非特定部门
通过搜索引擎查询与个人工作相关内容,完成个人或部门任务等;
通过搜索引擎检索相关专业资料,收集并整理公司需要文档;
其它在企业场景中,虽然搜索引擎可以完成上述任务,但是除了特定部门如营销外,其余大多数情况对于搜索引擎的依赖程度会随着工作时间的增加而减少。随着企业的发展,在核心业务稳定后,公司对于搜索引擎的依赖也会一定程度的降低。员工对于工作的熟练度会直接影响到对于搜索引擎的依赖。
可即便如此,搜索引擎依然是当下绝大部分职场人都不可或缺的工具,搜索引擎可以快速检索并且定位外部信息,如挑选供应商等,也会让员工在任何时候都至少有一套可以了解和学习本质工作外的工具辅佐工作。
但是上述的搜索引擎,除了少部分如营销部分外,依然只能间接帮助企业解决问题,在企业内场景,这类通用搜索引擎通常无法提供帮助。
那企业内有没有可能是需要一套企业搜索引擎的呢?企业搜索引擎应该解决企业哪些问题,并且怎么产生价值呢?
我通过这篇文章,从各个维度来尝试解答企业搜索引擎的各类问题,包括但不限于:
为什么以前没有企业搜索引擎?为什么企业搜索引擎特别难做?为什么2024年企业搜索引擎火了起来?以及企业搜索引擎的未来应该是什么样的?
可能对于微观上,比如企业搜索引擎的难点,未来的发展路径等,因为篇幅原因无法展开,将在后续文章中对此类问题进行进一步阐述。
正文,我们从企业发展现状开始说起:
企业发展现状——企业发展过程中的确定性因素有哪些?
随着社会的持续发展及科学技术的不断进步,当下的企业经营与过往的企业经营思路已经发生了明显的改变,并且这种变化会持续发生。那么企业经营现状中,哪些是我们目之所及能看到的,哪些是有确定性的呢?
1. 不可逆的企业数字化进程
企业数字化进程已经是不可逆了,甚至整个社会的数字化已经成为了必然。数字化概念提出至今,已经成为了社会经济发展的重要组成部分,而企业数字化也随着企业软件的不断迭代演进,成了企业发展的重要支撑。
当下,企业数字化的发展速度已经远超以往,其中,由于大众生活/工作方式的改变,知识工作者数量的持续增加,劳动力成本的持续上升以及市场竞争的持续加剧等原因,企业数字化已经从可有可无变成了非要不可;加上底层技术,如云服务、快速编程等技术的快速发展,以及企业服务软件、SaaS厂商的涌现,绝大部分国内企业也已经从不懂系统变成了知道要上系统,上系统的成本也远低于过往,对于系统带来的好处也是有相当认知。
虽然当下国内数字化依然是乱象丛生,一些关键问题仍然无法被解决,但是企业对于数据的渴望已经逐步开始显现。不管是政策上的数据资产,还是经营上的数据驱动,或者流程上的智能化、自动化等,都是数据在企业未来经营中的实际价值体现。数字化是企业内资源数据化的重要方式,但是数字化在国内依然处于中早期,未来想象空间依然巨大。
2. 组织能力成为决定企业发展的核心
企业的发展和竞争终究是企业组织能力的发展和竞争。对于组织能力的具体表现是企业内外部效率的提升。对于组织能力在企业内部的体现,比如信息传递的高效、业务流程的优化、决策质量的提升等;对于组织能力企业外部的体现,具体表现在对于市场趋势的判断,对于产品方向的把控,对于客户需求的响应速度以及应对竞争时的有效策略等。
对于这些部分,当下企业绝大部分判断的依据都来自于:感觉。可能大部分企业也会去观察分析数据,但是碍于数据的准确性不足,对数据分析理解不够等原因,最终都只能用一部分,信一部分,然后试一部分,改一部分,最终做出一些没有成效的动作。
提到数据,讲回数字化的话,早期的系统目的是把线下流程线上化,可以留存数据、简化流程,去纸化办公等,这些系统在特定领域快速发展,帮助企业一定程度上提升了管理效率,如审批效率、降低资源损耗等;但是随着企业业务的持续发展以及竞争的日益加剧,如何提高经营效率,并且做出更好的决策成了对系统的进一步需求和期待。
绝大部分企业长期停滞在这个阶段,只有少部分企业从这个阶段中继续向前推进,这也是国内企业都在面临的困境。
3. 新技术带来的挑战与机遇长期存在
新技术的出现总是伴随着争议,新技术带来的也并不都是机遇,但是拥抱新技术已经成了企业的必选项。不管是硬件还是软件,不管是什么样的商业模式,新技术往往是驱动变革的核心原因。对于新技术的理解和使用成了企业的重要课题。
新技术不会改变需求,但是会改变实现需求的成本和路径。比如:家庭清洁始终是强需求,但是用抹布、扫帚还是请保洁阿姨还是用扫地机器人等,都是解决这个需求的不同路径。所有新技术的出现往往伴随着用户习惯的改变,生产效率的改变,获客或销售渠道的改变,经营效率的改变等等,这里面一些是主动的一些是被动的。
由新技术带来的收益往往只会被少数【吃螃蟹的人】抓住,只有少量的新技术能带来大幅的收益。可即便如此,对于新技术,当下的理念大都是:不能错过,因为错过一次可能就意味着长期落后甚至失败,但是不错过,至少还能留在【牌桌】。
4. 其它
企业发展过程中的确定性肯定远不止以上,但是企业发展对比过去的盲目跟风或者野蛮生长,显然需要更加科学的体系支撑。确定性也并不意味着成功,只是一定程度上降低失败的几率。不管企业是在创业阶段,或者是在快速发展阶段亦或是进入衰退期,有了这些确定性以及科学的支撑依然可以让企业找到适合的发展路径。
上述罗列的几项内容都只是书面的分析,或者说是各种听上去正确的总结,但是如何能提高上述的确定性,比如:如何做好数字化?如何提升企业组织能力?如何快速学习并使用新技术?这些能力都不是能快速实现的,甚至每一项都是需要长期积累的。
那我们如何可以尽可能的做到或者接近这些确定性的事情呢?如何从企业过往的经验中总结出尽可能多的经验呢?
以下仅代表个人观点:
我始终认为:企业数据一定是关键中的关键。我们可以大胆的预言:数据将成为企业最重要的基础设施之一。
数据本身没有价值,但是通过数据却可以创造出无穷无尽的价值,数据是企业生产、经营、战略等几乎所有的经营活动所依赖的、不可或缺的信息。数据就如企业经营者的眼睛,通过数据可以反映出企业经营过程中各个环节的问题,如:
财务人员掌握全局财务数据,就能够帮忙老板作出更好的战略布局,提高企业决策力;
生产人员掌握市场数据、产品数据,客户数据,就能以更高的效率生产出更好的产品,提升企业生产力;
营销人员掌握客户数据,就能更深入了解客户,为客户提供更好的产品和服务,提升企业营销力;
通过以上例子,我们就容易理解数据价值,总结数据在企业内的价值通常可以体现为以下几种:
1. 用数据准确地描述事实:用数据可以更准确地描述、记录事物和现象,帮助人们准确识别事物对象,全面了解事物的真实面目。
2. 用数据发现事物的规律:数据的作用还在于能让人们发现问题,分析现象之间的关系,并形成正确的判断与决策。
3. 用数据更好的预测未来:数据还可以通过统计与分析,预测即将发生什么,发生的概率是多大。
4. 其它
综上,我相信数据一定会成为企业的重要基础设施。
企业原先的基础设施包括:生产设备、建筑物厂房、信息和通信技术等硬件或软硬一体的设备或设施,但是这些基础设施都是大家看得见,摸得着,并且都可以知道价格的,但怎么用这些基础设施做出不一定的产品,跑通不一样的商业模式,最终都会呈现在数据上,数据会成为企业软性的核心基础设施。
数据作为基础设施,当下主要由两部分构成:
1.数据的基础设施,包括生产、流转、存储、应用、安全等和数据强关联的各类工具;
2.数据本身作为基础设施,可能形态如:数据资产、由数据分析得出的商业模型等;
如果大家都开始相信数据是企业的基础设施,那么对于数据的投入与使用将是企业未来提升效能的一个重大课题,而数据作为基础设施,也需要有更多的定义和标准。
那当下企业数据的现状是什么呢?
先讲结论,绝大多数企业内部数据是无法直接使用的,数据使用率低并且只能在特定场景中发挥有限价值的。
企业无法让企业内数据发挥价值跟当下企业软硬件发展情况有一定关联,也与国内企业发展路径有着一定的关系。虽然数字化转型已经成了企业经营者的共识,但是当下的企业数字化依然处于十分早期的阶段,远没有涉及到发挥数据价值。
企业数字化会被认为是建设企业数据基础设施中的一个重要过程,企业数字化当下的主要价值除了基础的采集和存储数据外,大家普遍还是在宣传降本增效,而如何降本增效大都讲的模糊,使用过数字化工具之后大家普遍认知还是企业降本增效的不够明显,对于流程上的优化,数据留痕回溯以及去纸化的降本等,都是停留在感受上,而很难实际体现。而当下企业数字化市场的混乱也给发挥数据价值带来了新的挑战,尤其以:业务连贯性、系统封闭性、数据准确性、操作人员基本素质等问题带来的数据孤岛、信息墙、数据失真、处理分析困难、业务断层等问题尤为明显。
数据价值在当下企业数字化发展过程中始终发挥不出大的价值,虽然大多数厂商依然在阐述自己是如何关注数据、使用数据的,但是实际上大多数的业务及价值体现上,都不会涉及数据价值,而更多是功能和管理层面。实际当下数字化产品大部分都强调自己的knowhow、行业优势等,这些优势的积累通常是通过对同一场景或行业不同客户的长期服务与深刻理解来实现的,而积累这些的konwhow相关数据通常是来自于为不同企业提供服务过程中的理解和沉淀,对于数字化厂商来说,这反而是数据价值在服务商侧的一种体现。
在企业数字化转型落地阶段,由于数字化宣传的降本增效与员工天然站在对立面,加上国内基层员工素质差异较大,数字化推动过程会出现较大的不确定性,如何让员工配合企业完成数字化转型,愿意学习使用数字化工具,并且正确使用数字化工具等,都成为了企业及软件厂商不得不面对的难题。
在这样的发展方式下,企业内数据通常会表现出诸多乱象,主要表现为以下几点:
1. 数据质量差:数据准确性差、数据格式多且不规范、数据不完整等;
2. 数据分散:系统不同、数据库不同、角色权限不同、数据载体不同等;
3. 数据维护难:需要同时维护多套系统,不同数据库,各类账号权限等;
4. 其它
在数据使用上,企业同样面临诸多难题,重要表现为:
1. 数据处理难度大:数据质量差导致数据清洗难度大,数据真实性存疑等;
2. 数据整合难度大:系统多、权限多等问题造成的数据采集难度大,无法对齐等;
3. 数据分析难度大:数据分析工具使用门槛高、缺乏成熟的数据分析模型,无法进行有效深度的数据分析等;
4. 数字化人才缺失:上述诸多问题,都需要数字化人才,而数字化人才国内极其缺乏。
5. 其它
补充:上述问题很难通过当下企业服务软件厂商来解决,国内大多数企业服务软件厂商都集中在流程侧,能力更多体现在工作流上,将自己对行业、场景的认知变成一套成熟的方法论,通过软件的形式呈现出来,在软件的实际使用上依然很难掌控。在数据的分析上,碍于产品范围的局限以及核心能力的不匹配,只能做与自己强相关的部分数据分析,如CRM中的销售漏斗,客服系统中的客户满意度等,基本上都是数据分析要求不高,但是场景需要的简单数据分析。
那在企业内,到底如何使用数据,或者数据怎么样才能被充分发挥价值呢?
对于企业如何用好数据,是有一定的前提条件的,这些前提条件包括:
1. 数据实际控制权是公司
数据归属问题听上去不是个问题,但是控制权往往存在多方拉扯。结合实际情况来看,企业想要调取数据或者做系统迁移时,通常会被供应商刁难,这时候过往数据通常会受到损失;而在企业内部,由于部门系统存在差异,对于不同部门的数据,即便是通用数据,也需要特定人员授权或者协助才能获取,甚至感觉数据的实际拥有是部门,所有解释权在部门,这些问题都将导致企业无法使用数据。
2. 数据被有效集中管理
由于场景不同、系统不同,工具不同等原因,企业数据通常被分散存储在多个地方,而这种形式就注定了企业数据管理难度大,成本高。如果企业内涉及到跨部门数据的调取和分析,通常需要多个账号,多人批准以及诸多对系统熟悉的人的支持,那么数据使用将劝退很多人。企业内对于数据统一管理是数据使用重要前提。
3. 数据被有效清洗且保持准确
企业内数据脏、乱、差的问题将长期存在。对于使用数据前的预处理必须持续进行,对于无用数据的分析对公司非但没有好处,甚至会变成灾难。对于数据的清洗必须是需要被重点关注的事情,为此付出一定的成本绝对是值得的。
在明确数据控制权、集中管理并且经过保证准确之后,才是企业使用数据的开始,而企业使用数据也分为几个纬度,由浅至深至少有以下几类:
1. 信息/数据共享
企业内所有数据的最基础价值就是共享,数据共享可以让一些全公司需要了解的信息快速传递给所有人,避免出现重复对齐等情况,损耗大量工作资源。
我们以产品版本迭代为例,产品迭代信息通常会以邮箱、企业微信或者知识库内提醒等方式传递给公司所有人,但是绝大部分员工是不会关注所有迭代信息。当员工遇到产品问题时,通常需要查找相关产品问题的内容或者是通过产品部门的同时询问相关内容。
2. 数据可视化
数据可视化是比较流行的使用数据的方式。通过对结构化数据进行分析处理,把数据以图表的形式呈现出来,可以直观的看到数据间的关联及变化,方便企业快速了解公司部分指标的动态变化及反应出来的经营情况。数据可视化也可以用于企业内外部汇报,通过可视化图表汇报不仅直观,而且也美观,可以让汇报更加丰富。
3. 数据模型化
复杂的数据使用方式就是将企业数据模型化。企业数据模型化对于数据分析师或管理者要求极高,一方面要求对对企业实际经营情况有深度了解,同时也要能够使用各种数据工具,如数据挖掘、机器学习等技术。
数据模型化可以将企业的核心环节都变成一套套模型,模型可以反应事件间的相互作用,也可以协助企业了解企业经营过程中的优劣势以及合理的预测业务发展趋势等。
4. 数据资产化
数字资产是企业未来的重要资产,也是数据使用最直接的价值体现。随着企业快速发展,数据量的增多以及高质量数据的沉淀,数据作为企业基础设施是会被合理定价的,数字资产也将成为评定企业价值的重要组成部分。
通过各种方式使用数据后,数据将对企业产生哪些实际价值呢?
一:对业务数据的使用带来的市场竞争力提升
对业务数据的分析通常会让企业在客户侧有诸多的收获,如:
1. 精准定位目标客户
2. 了解产品竞争优势
3. 提升客户服务质量
4. 预测市场发展趋势
5. 其它
二:对管理数据的使用会带来的经营效率提升
对管理数据进行分析可以了解企业管理效率,从而让企业管理效率有明显提升。
1. 通过对物的管理,可以优化生产、改善供应链以及提高企业内协作效率等;
2. 通过对人的管理,可以了解不同角色对企业的实际贡献价值,可以进退有序的进行人员调整。
三:对经营数据的使用带来的决策质量提升
企业经营是一个复杂的过程,决策在企业经营过程中每天都在发生。不管决策大小,企业都更希望决策尽可能是正向,靠数据来驱动决策是公认正确的决策方式之一。
1. 经营数据可以反应企业不同类型决策对企业可能产生的整体影响
2. 经营数据可以对风险进行较好的规避和应对,防止企业出现系统性风险
3. 经营数据可以提前辅助企业判断未来发展趋势,推动企业提前做出合理决策
4. 其它
综上,我们把企业数据相关内容已经进行了较为全面的阐述,但是在实际情况中,企业数据相关联的产品太多,数据要想达到上述理想状态是极难实现的。
我们把数据在企业内的整个生命周期划分一下阶段,至少有四个阶段:数据产生,数据处理,数据使用,数据迭代,这个四个阶段使用到的产品和能力也都各不相同。同时,由于部门不同,角色不同、目的不同等原因,实际企业经营过程中涉及到的与数据生命周期相关的工具更是多种多样。
我大致罗列一些数字化相关的品类、类型及产品供大家参考:
数据库;MySQL、Oracle、MongoDB等;
CRM系统;纷享销客、Salesforce、销售易、Zoho等;
ERP:SAP、用友ERP、浪潮ERP等;
OA;泛微、致远、蓝凌等
低/零代码:简道云、明道云、奥哲、伙伴云等;
即时通讯:钉钉、企业微信、飞书等
BI:帆软、PowerBI等
以上仅为部分常见数据化相关产品类型及工具。随着像云技术的出现,SaaS让数字化成本降低的同时也将臃肿的ERP系统逐渐碎片化,在国内外接连出现了各种类型的单一场景SaaS软件;与此同时,因为发展遇到瓶颈,部分厂商不断拓宽自己产品边界的现象也是屡见不鲜。可是即便如此,企业依然有大量的场景仍让无法找到合适的数字化产品。
当一家企业需要面对这么多品类及这么多产品时,如何使用,如何串联,以及如何维护就成了一个很大的问题,而也是因为这么多产品的存在,企业数据实际在企业中也面临着使用效率极低的问题。
从企业服务厂商的角度出发,对于特定场景的深度理解以及围绕此做的商业化才是企业长期发展的核心竞争力。我们假设对于特定场景,软件服务厂商可以提供完整的解决方案及准确的数据,那么在特定场景的数据就可以发挥出特定价值,但如果考虑到企业经营,涉及跨部门、跨角色、跨系统等问题时,特定场景的数据就显得不太够用了,企业需要更加全面的各类数据才能了解企业经营的全貌。所以不管是现在还是以后,企业内部数字化工具种类多的情况将长期存在,由此带来的企业数据问题也会长期存在。
所以对于企业而言,如果想要用好数据,在当下的选择是有限的,绝大部分会针对企业数据建设自己的数据团队,并且组织内部对数据进行各种研究,这当然也意味着大部分中小企业是承受不了这部分成本的。
但是,我认为对于所有企业,既然企业有了数据,让企业数据发挥价值应该是一件所有企业都能做的事情,也应该让所有企业享受到数据带给企业的价值,而不是只有特定企业才可以。所以处理企业数据这件事,需要有人来做,而当下其实是有厂商在专注于此的,比如BI,BI就是将分散在企业各地的数据清洗整合,然后通过分析展示的一种重要工具,而BI这种方式也很好的呈现了企业内数据如何从分散混乱到可用有序的整个过程。
只是,企业内不是所有数据问题都可以通过BI来解决,所以有没有面对所有情况均可用的更好的解决路径呢?
到此,我们先来简单总结一下当下企业在数据这个基础设施上内外部面临的情况是什么样的?
内部期待:
1. 好用的工具
好用的工具有多个纬度,其中包括:操作简单、使用意愿强、产品稳定性高等;
2. 可用的数据
可用的数据有多个纬度,其中包括:数据准确、数据可被检索、数据安全等;
3. 可预见的收益
不管数字化或者是数据,企业需要看到由它们带来的实际收益,这些收益要显性高于隐形,可量化部分高于不可量化部分。
实际情况:
1. 对数字化左右为难
企业管理者在经营管理中意识到数字化的重要性,但无法做好顶层设计和底层执行。原因包括但不限于:对数字化的理解过浅;数字化产品过多、同质化严重;对原有管理方式的冲击;使用难度大、成本高;产品间缺乏统一规则;系统封闭,权限复杂;解决特定问题效果有限;由数字化带来的新烦恼如维护、业务连贯性等。
2. 对数据无从下手
企业内由各种工具/系统产生和存储了大量企业数据,但数据质量差、种类丰富、跨系统数据无法对齐、维护及治理成本高等。缺乏有效的数据工具和数字化人才导致大量企业数据被荒废,没有实际价值并且为企业增加外成本。
3. 对价值一言难尽
企业发展好,看数字化,企业发展坏,砍数字化是当下企业对数字化价值的映射。由系统带来的效率提升等不够明显,不推进数字化对企业经营也没有严重影响。而数字化带来的新问题和额外成本,让企业叫苦不迭。
综上,我们撇开过往,重新来思考数字化和数据价值,我们是不是可以先定个小目标,从可以快速找到数据开始。
上面我提到了用好数据的三个前提,其中数据的实际控制是较为容易实现的,但是集中管理和有效清洗本身是有一些挑战的。
对于数据的集中管理,如果按照当下合理路径,需要通过数据湖或者数据仓库的方式来进行,在对数据集中管理的同时,进行一定的清洗,在实际使用时再次处理后使用。这种方式意味着成本高、效率低,长期来看维护困难。而以上的操作都是成本项,如果数据本身没有价值,那么做好这些前提本身只是意味着成本增加而已。
那实际上大家可能需要的是什么类型的产品呢?或者什么样的产品可以低成本让达到满足数据使用的前提条件呢?
我们从实际工作场景出发,当我们需要使用数据时,第一步通常是定位这些数据可能在哪,然后就是查找或者询问获得数据,如果一切顺利拿到数据,再进行处理分析;如果不顺利,则需要很多人配合进行定位、查找、清洗,然后分析。或许我们可以不通过将数据主动集中管理的方式,而是通过一种较为被动且无感的方式进行集中管理,并且能够通过一些方式过滤掉低价值的数据的方式。
所以,我自然而然的想到了搜索,一个企业内的全量搜索平台是不是可以一定程度上解决这个问题。
因为上述提到的诸多问题,大家应该很清楚当下企业内要想通过一个工具就检索到所有数据是不太现实的。那么单一产品的检索道理上应该是可以实现的。可是在经过我的实际产品调研后,我发现我似乎把企业服务软件中的搜索想的太过理所应当了,在我体验过的产品中,没有一款能提供单一产品内全量检索的功能,实际的情况是:
1. 产品没有任何检索功能
2. 产品只能检索单一类型数据
3. 产品内有多处搜索框,只能针对单一应用或单表做查询
4. 其它
也就是说企业服务软件本身对搜索功能是不重视的,可有可无。我们假定特定企业服务软件比如CRM,因为只有营销、销售部门使用,大家对CRM的规则及使用已经烂熟于心,所以对于搜索几乎是没有强需求的,大多数企业服务软件厂商也会更加关注怎么做好销售管理、提升销售业绩等特定业务事项,这也是合情合理。
但是,因为业务是企业内的核心发动机之一,所有业务经常会牵扯公司的整体经营走向,经常需要和不同部门进行互动和对齐。当其它部门需要业务部门辅助时,通常会需要通过访谈等方式来对齐,而CRM中的数据需要通过销售筛选和处理后才能被使用。在这个过程中,当数据只存在一方,并且解释权归特定方时,数据使用的难度就会大打折扣。如果需要定位数据,只能通过特定人员,特定权限及特定工具才能定位,而使用前,还需要经过对应特定人员的处理,这个过程不仅对资源损耗较大,最后被特定人员解释的数据可信度也存疑。我们在这其中还忽略掉了因为各种沟通问题导致的返工等可各类风险。
在企业内,上述场景类似的情况在大面积的发生,但凡涉及到协作、对齐等等工作时,通常需要经历上述经历,而当做出错误决策或结果不尽如人意,因为此的推诿扯皮现象也是屡见不鲜。
那么,如果我们有一套企业内部搜索引擎,希望通过这套企业搜索引擎来解决上述问题,这套搜索引擎至少应该是什么样的呢?
1. 全量数据检索
企业搜索引擎必须能够检索到企业内部所有相关数据,不管数据在哪个系统,哪套工具,或者是存在哪个数据库等,相关数据要能够全部检索。
2. 数据安全可靠
服务企业内及系统内的各类权限配置,并且保证数据安全。任何可能造成数据外泄,包括安全问题及权限问题等的情况,都绝对不容许发生。
3. 检索高效准确
检索效率高,并且呈现出尽可能精准的结果,并且进行有效排序。任何检索不能在发起请求后,十分钟甚至半小时之后给出答案,不能只是够用,必须好用。
如果满足了以上条件,那么企业搜索引擎算是基本可用了。
假设企业内部已经有了企业搜索引擎,大家遇到类似的情况可能会怎么做呢?
首先,我们可以通过搜索引擎在企业内查找到特定问题的全量信息;
其次,我们可以从多维度对同一问题进行处理分析确保不会因为单一来源造成偏差;
最后,我们可以通过内外部直接对自己对判断进行确认及修正,保证决策的独立准确。
而所有的问题,省掉了大量的协调、沟通、确认过程,而更多的时间被用来思考、处理和验证,这一切的改变仅需要一个搜索框便可以完成。
没错,这是较为理想的状态,但是实际情况会是如此吗?
我们在以往提过类似需求的企业中发现了一个有趣的现象,企业搜索引擎即便如此便捷,但在实际使用过程中还是会出现一些较难处理的问题,比如:
1. 由内容同质化带来的排序及有效性问题
在企业数据实际使用过程中,市场会出现检索结果相似,甚至重名文档等问题,如何确认有效性并且进行排序是在实践中较难体现的;
2. 由数据类型不同带来的检索不完整问题
对于不同类型企业数据的检索一直是搜索引擎需要攻克的难题,在企业内非结构化数据无处不在,对于不同类型的数据如何进行搜索和展现也是需要解决的;
3. 由于职能不同带来的检索方式不同问题
对于同样一个需求的阐述,在企业内不同职能、不同角色等的阐述会出现极大的偏差,业务与研发等不同部门人员对于如何查找数据的表述和关键词截然不同,但是需求一致,这种情况下如何保证搜索引擎结果的一致性。
4. 其它
最后,检索固然能帮忙节省一定的时间,并且也相当程度上解决了企业内部数据查得到的问题,但是总体没有摆脱数据本身没有价值这件事,数据的处理和分析等实际使用依然也是需要指导和帮助的。
这里就必须再简单提一点,在做C端搜索和B端搜索时,用户的习惯和期待是不一致的。对比于C端的将就和能用,B端要的是好用和准确,对检索结果和体验的要求是远高于C端的。
所以,企业搜索引擎在企业内部达到以上程度,基本上可以算80分,但是距离90分依然是有差距,考虑到企业内对于数据准确性的要求以及对结果需要负责的实际情况,80分的产品就意味着员工在实际使用过程中会随着对搜索体验的不满足而逐渐减少使用。所以,上述在实际使用过程中大概率会遇到的问题也必须给出一定的解法。
我们再看上述提到的诸多较难处理的问题,这里面涉及到的技术底层问题实际上远比想象的要多得多,即使如搜索引擎这类相对成熟的技术,但是也会因为数据源、用户使用习惯、排序规则及混合搜索占比权重等情况,需要做相当长时间的投入。
如此一来,在以往时候,企业内搜索引擎就以前似乎就有点食之无味弃之可惜了,因为大部分的数据与其投入成本做一个达不到预期效果的产品,还不如让熟悉的人人肉检索处理,除非超大型企业,否则对于这类产品的需求可以忽略不计。
这时候,AI技术突飞猛进,新技术的突破为企业搜索引擎这件事描绘出了新的蓝图。
为什么说AI为企业搜索引擎带来了新的机遇,到底AI对于企业搜索引擎来说,解决了哪些问题?
AI的底层能力重要包含几个方面,大致可以归纳为:
计算机基础、神经网络、数据处理、模型设计与训练、知识表示与推理。
再厉害的技术,底层依然没有脱离开最核心的基础能力和客观规律。从使用者的感知来说,其实就是让以前觉得很复杂的操作或者很繁琐的内容通过各种技术手段来变的简单,对人类更加有益,然后满足人类的生活需求,解放人类的生产力等;也可以用一句较为经典的话概括:让人变懒。
那么对于企业搜索引擎来说,过往的体验感差的问题似乎就有了一定的解法,过往体验感差的底层原因是可以被概括的,主要包括:
1.数据处理
对应事项:无法检索非结构化数据、无法对检索结果进行高效排序等;
2.神经网络、知识推理
对应事项:无法提供可供操作的路径、无法提供可供参考的思路、无法提供可用于汇报的结构化结果等;
如果企业搜索引擎加上这些能力,那ai+企业搜索引擎的能力就包含,甚至不限于:
1. 连接能力
连接能力包括但不限于:与企业内原有工具/系统进行多维度的高效打通;
2. 数据检索
能够快速从所有企业系统/工具中准确检索到相关信息,并进行合理排序;
3. 统一入口
作为企业数据查询,企业不同系统待办以及未来潜在的多智能体统一入口;
4. 数据处理
处理多类型数据,将企业内分散数据汇总后再分析,快速获取结果数据;
5. 知识推理
通过大语言模型、生成式等技术将零散数据重新结构化,提供参考答案或路径;
6. 数据安全
无缝衔接组织架构,符合企业数据安全要求的同时兼容各系统权限,保证数据安全;
当ai企业搜索引擎能够提供诸如以上功能及实现效果,那么ai企业搜索引擎是有可能 会成为企业内最核心的数据产品,并且将极大的发挥数据价值,并且为所有员工提供个性化智能助手,那想象力是不是可以进一步放大了。
那这样的企业级产品,这样的ai企业搜索引擎是不是可以有成为90分产品的潜力。
如果可实现到以上程度,那么有几个企业内部场景将立马得到质的飞跃,如:
企业新员工可以通过一个检索框完成基础工作,无需培训、即刻上手;对于常见问题,如产品功能更新迭代等,不再重复询问或者回答一样的问题;客户服务团队每个人都可以随时针对客户问题进行企业内信息查询,并得到参考答案;
诸如以上场景,企业员工的工作效率将得到极大幅度的提升。
据麦肯锡的数据,员工每天花费 1.8 小时搜索和收集完成工作所需的信息,几乎占了工作日的四分之一;对于数据量较少的中小型企业,或者对数据要求不高的制造业企业,员工需要花费10%-30%的时间用于信息分析和整理;以上两项在当下员工实际工作中,至少占用20%-40%的时间,即不管是从事什么样工作的企业员工,有相当一部分的时间用户检索和处理。根据企业不同,该数据还会有明显增加,如金融、互联网等行业,数据远超30%。
以上数据均有据可依,那么综合核算下来,企业内如果有可用且好用的采集及处理数据的工具,配合便捷可用的搜索功能,那员工平均可以节省工作时间至少为15%,加上因为所有人的效率提升带来的连锁反应,比如提问题人与被提问题人是在消耗两份时间,那么实际提升效能将远不止于此。
而除了这些可见效果外,企业收获的其实远不止这些。企业还将收获到:
1. 企业统一的操作台/工具台
2. 企业内部高价值数据集
3. 所有人可用的智能助手
也就是说,企业有可能终于可以有一套对所有人可切实使用的企业数智化完整解决方案。这可能是一件会让人兴奋的事情。