基于前述文章【你找到好用的知识库了吗?】,相信大家对于知识库有了更多的理解。对于AI时代,到底该如何选择和使用知识也有了一定的思考。
由于AI在落地过程中,结合知识库是最基础也是最常见的使用方式,所以当下有相当一部分的企业已经体验或者使用过AI与知识库结合的相关产品,如常见的针对客户的客服系统、针对内部员工的问答系统等。但是从实际使用反馈来看,大部分场景效果并不出色,甚至使用后吧出现了对AI问答的抵触情绪。
在针对为什么AI不好用的分析中,大家普遍会认为导致AI使用效果不佳的核心原因是知识质量不佳。这里面正好也印证了我们前述文章【AI落地难题:没有好的数据,哪来好的落地】中提到的问题。
对于这一问题的解决,我们在最近与客户的沟通过程中,提出了我们的解决方案,那就是【动态知识库】。
先介绍一下动态知识库,动态知识库顾名思义,就是能动态采集、按格式整理且实时存储知识的工具。与传统知识库相比,动态知识库既需要AI能力的支撑,也更具备与AI结合的可能。
那我们要怎么实现动态动态知识库,并且最终动态知识库该以什么形式展现呢?
-
动态知识包含哪些
当企业内的信息,如规章制度、最佳实践、帮助文档等发生变化的时候,知识库内的信息按理应该一并调整,并且相关调整以特定机制告知相关方,整个链路即为动态。
但是实际上的动态远不止于此。如果只是做到上述效果,那么企业内部安排几位专门做知识管理的员工理论上也可以做到信息的更新、梳理与发布。那么然后呢?
企业安排知识管理的员工即时处理知识目的不是为了让知识留存在知识库中,而是要利用好这些知识。而企业的知识,即使知识库更新的再勤快,最后使用的时候依然会发现有大量的实时信息是在知识库之外的,而到了这个环节,实际使用的节点,存在于知识库内的知识其实相对又都是静态的。
所以,在利用知识这个环节,动态知识库的总集是最新的知识库知识以及在各个系统中与特定问题相关的最新知识。比如想要了解一个客户的信息,这个客户的知识大概率会同时存在于CRM、OA、客服系统以及产研系统中,那么理论上这个客户的知识总集是该客户相关的系统内的所有信息以及知识库内针对该客户或者类似客户的场景或案例等等,但是这个知识库可能随着时间的不同还会出现变化,那么它的展现形式就一定不是传统的知识库,并且靠知识管理员工即使再怎么积极的工作也是没有办法整理全这些信息。
-
动态知识库的呈现
接上述例子,那么这个客户的知识总集应该以什么形式呈现呢?或许动态知识库应该以哪样的形式呈现才是最有价值的?
当我们每次发起一次AI对话或者操作,理论上应该先提取到和该操作相关的所有信息,比如上述的客户信息,那么基于这一步骤,发起动作后的第一步应该是检索到该客户相关的所有最新信息,然后结合过往知识和案例等,按照一定的流程或逻辑投喂给AI,让AI按照我们的要求处理,并按照我们的逻辑输出结果。不仅如此,我们每一次想要了解该客户时,都应该能有一个这样的数据集快速且实时的产生。那么,这个数据集才可能被称为动态知识库。
那动态知识库的形式一定不是静态的数据集或者类似当下传统知识库更侧重于承载知识,动态知识库更像是一个有着固定编排的智能对话框,包括隐藏在其中的检索、流程和提示词功能。其中最难的还是如何准确检索到散落在企业各处的知识。
综上,动态知识库应该是以多轮对话的方式存在,而其背后应该是基于企业内全域的知识检索、成熟的流程和高质量的提示词等。
或许我们可以做个类比,动态知识库的展现形式会很像BI产品的展现形式。在任何时候,我们可以查看到我们想看的数据和报表,而这些数据大部分都能保证一定的实效性,大部分是在T+1内。BI的实现路径就是基于数据的爬取,按照固定规则的运算,以及基于实际需求的呈现。从实现上来看,BI与动态知识库最大的区别在于一个是处理数字,而一个是处理知识。
所以,完整的动态知识库产品应该同时具备哪些功能和能力呢?
1.全域检索 — 对应产品:企业搜索,如EMOO Search等;
企业搜索是动态知识库最大的知识来源,因为知识的产生与沉淀通常是分散在多个不同系统中的,所以为了保证动态,必须有一款产品可以实时抓取到企业内不停变化的知识,企业搜索无疑是最佳的实现路径。
2.知识承载 — 对应产品:多轮对话、传统知识库等;
在动态知识库概念中,动态知识库的承载也是需要工具做支撑的。当动态知识产生后应该保存在对话中,为了方便后续出现问题时进行回溯。而此次操作产生的所有知识在下次使用该Agent或者对话时,应该以文档形式存储在特定位置,如传统知识库,以便于后续分析及处理。
3.提示词 — 对应产品:大语言模型/提示词库等
提示词并不是简单的问答,我们需要用系统化的方式设计提示词。对于高度重复工作的场景,一套好的提示词对于生产高质量知识起着极大的影响,不管知识是在哪里产生,以什么形式产生,最终使用时应该都是以相对固定的形式呈现,这样才能让所有人更为便利的使用。
4.其它
具备了以上几种能力的产品,才能被成为动态知识库。在实际使用场景中,当发起一次检索或者操作时,动态知识库可以根据使用者过往使用AI的情况,在企业全域范围内发起一次信息的采集,按照一定的要求组成一个实时的数据集。根据这个实时的数据集来处理相关工作,这显然也更符合企业内实际工作的场景,当然这也更加容易得出更为准确的答案。
动态知识库如果在企业内实现,那么企业内的工作方式将发生一定的变化。对于大部分企业内知识工作者而言,本身工作的大部分时间都是在检索、整理和利用知识,当动态知识库可以高效的采集、梳理且利用这些信息时,将极大的解放员工的生产力,通过AI处理知识配合人工校验及优化的方式,将大大提升企业内知识工作者的效率,也为企业内落地AI提供最坚实的保障。
这里也补充说明一点,在我们看来,企业内AI落地难的核心原因是知识质量不佳,但是并不是知识质量高就一定可以更快更好的落地AI,这里还有另外一个重要因素,就是你会不会使用AI工具。
不太会用的AI工具
对于如何与AI进行更好的交互这件事,关键是由人的意愿和认知决定的,大家对于AI的使用现在依然还处在较为早期的阶段,大都还是用与搜索引擎交互的方式,如关键词或者短句等方式在使用AI,这也直接影响了AI输出的质量。
当下市场中,绝大部分AI产品初期尝试门槛均不高,但是如果涉及到深度使用,也会面临相当的挑战,如Cursor,如果一个完全没有任何技术能力的人使用,也只能解决简单问题,在初期感受到该产品的魅力,但是随着逐步进入深水区,这类产品的使用反而大幅提高了使用门槛,对从业者的要求也变得更加多元。所以我们在这里讲的AI产品的使用大部分是基于泛化的使用,即会使用Cursor生成简单可交互页面或者小游戏。
但是随着AI的普及度加速以及AI产品在易用性的持续突破,对于AI工具使用的能力会随着时间的推移逐渐缩小。大部分人都会使用大部分AI工具的基础功能是必然会发生的事情,而在实际工作场景中,大部分人也只需要使用大部分AI工具的基础功能就能大幅提升效率也是必然会发生的事情。