【Java题解】小米算法面试题

小米算法面试题

对于无序数组a,求a[i]-a[j]的最大值,其中i<j.

解决方法

时间复杂度O(n)
1. 首先我们通过一个指针k,从数组nums的第二位至倒数第二位分割此数组。
2. 然后对每次分割开的两个数组,前半段求最小值kMin,后半段求最大值kMax。
3. 最大差值kMax-kMin就是在保证i<j下的最大差值maxDiff。

代码
import java.util.Arrays;

public class GetMax {
    public static void main(String[] args) {
        int[] nums = new int[]{2,1,3,100,85,0,12,3,35,8};
        System.out.println(new GetMax().MaxDiff(nums));
    }

    public int MaxDiff(int[] nums){
        int maxDiff=nums[1]-nums[0];
        for (int i=1;i<nums.length-1;i++){
            int kMin=CheckMin(nums,i);
            int kMax=CheckMax(nums,i);
            if (maxDiff<kMax-kMin){
                maxDiff=kMax-kMin;
            }
        }
        return maxDiff;
    }

    public int CheckMin(int[] nums,int k) {
        int min = nums[0];
        for (int i =1; i < k; i++) {
            if (nums[i] < min) {
                min = nums[i];
            }
        }
        return min;
    }

    public int CheckMax(int[] nums,int k) {
        int max = nums[0];
        for (int i = k; i < nums.length; i++) {
            if (nums[i] > max) {
                max = nums[i];
            }
        }
        return max;
    }
}

代码还有很多细节可以优化,思路应该是对的。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值