什么是二分法?

经常见到的类型是在一个有序数组上,开展二分搜索,但有序真的是所有问题求解时使用二分的必要条件吗? 不!只要能正确构建左右两侧的淘汰逻辑,你就可以二分。

(1)在一个有序数组中,找某个数是否存在

public static boolean exist(int[] sortedArr, int num) {
   if (sortedArr == null || sortedArr.length == 0) {
      return false;
   }
   int L = 0;
   int R = sortedArr.length - 1;
   int mid = 0;
   // L..R
   while (L < R) { // L..R 至少两个数的时候
      //mid=(L+R)/2 不安全,容易溢出
      //mid=(L+(R-L)/2) 不会溢出 /2 = >>1 位运算快
      mid = L + ((R - L) >> 1);
      if (sortedArr[mid] == num) {
         return true;
      } else if (sortedArr[mid] > num) {
         R = mid - 1;
      } else {
         L = mid + 1;
      }
   }
   return sortedArr[L] == num;
}

(2)在一个有序数组中,找>=某个数最左侧的位置 

// 在arr上,找满足>=value的最左位置
public static int nearestIndex(int[] arr, int value) {
   int L = 0;
   int R = arr.length - 1;
   int index = -1; // 记录最左的对号
   while (L <= R) { // 至少一个数的时候
      int mid = L + ((R - L) >> 1);
      if (arr[mid] >= value) {
         index = mid;
         R = mid - 1;
      } else {
         L = mid + 1;
      }
   }
   return index;
}

(3)在一个有序数组中,找<=某个数最右侧的位置

// 在arr上,找满足<=value的最右位置
public static int nearestIndex(int[] arr, int value) {
   int L = 0;
   int R = arr.length - 1;
   int index = -1; // 记录最右的对号
   while (L <= R) {
      int mid = L + ((R - L) >> 1);
      if (arr[mid] <= value) {
         index = mid;
         L = mid + 1;
      } else {
         R = mid - 1;
      }
   }
   return index;
}

(4)  局部最小值问题 

public static int getLessIndex(int[] arr) {
   if (arr == null || arr.length == 0) {
      return -1; // no exist
   }
   if (arr.length == 1 || arr[0] < arr[1]) {
      return 0;
   }
   if (arr[arr.length - 1] < arr[arr.length - 2]) {
      return arr.length - 1;
   }
   int left = 1;
   int right = arr.length - 2;
   int mid = 0;
   while (left < right) {
      mid = (left + right) / 2;
      if (arr[mid] > arr[mid - 1]) {
         right = mid - 1;
      } else if (arr[mid] > arr[mid + 1]) {
         left = mid + 1;
      } else {
         return mid;
      }
   }
   return left;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值