经常见到的类型是在一个有序数组上,开展二分搜索,但有序真的是所有问题求解时使用二分的必要条件吗? 不!只要能正确构建左右两侧的淘汰逻辑,你就可以二分。
(1)在一个有序数组中,找某个数是否存在
public static boolean exist(int[] sortedArr, int num) { if (sortedArr == null || sortedArr.length == 0) { return false; } int L = 0; int R = sortedArr.length - 1; int mid = 0; // L..R while (L < R) { // L..R 至少两个数的时候 //mid=(L+R)/2 不安全,容易溢出 //mid=(L+(R-L)/2) 不会溢出 /2 = >>1 位运算快 mid = L + ((R - L) >> 1); if (sortedArr[mid] == num) { return true; } else if (sortedArr[mid] > num) { R = mid - 1; } else { L = mid + 1; } } return sortedArr[L] == num; }
(2)在一个有序数组中,找>=某个数最左侧的位置
// 在arr上,找满足>=value的最左位置 public static int nearestIndex(int[] arr, int value) { int L = 0; int R = arr.length - 1; int index = -1; // 记录最左的对号 while (L <= R) { // 至少一个数的时候 int mid = L + ((R - L) >> 1); if (arr[mid] >= value) { index = mid; R = mid - 1; } else { L = mid + 1; } } return index; }
(3)在一个有序数组中,找<=某个数最右侧的位置
// 在arr上,找满足<=value的最右位置 public static int nearestIndex(int[] arr, int value) { int L = 0; int R = arr.length - 1; int index = -1; // 记录最右的对号 while (L <= R) { int mid = L + ((R - L) >> 1); if (arr[mid] <= value) { index = mid; L = mid + 1; } else { R = mid - 1; } } return index; }
(4) 局部最小值问题
public static int getLessIndex(int[] arr) { if (arr == null || arr.length == 0) { return -1; // no exist } if (arr.length == 1 || arr[0] < arr[1]) { return 0; } if (arr[arr.length - 1] < arr[arr.length - 2]) { return arr.length - 1; } int left = 1; int right = arr.length - 2; int mid = 0; while (left < right) { mid = (left + right) / 2; if (arr[mid] > arr[mid - 1]) { right = mid - 1; } else if (arr[mid] > arr[mid + 1]) { left = mid + 1; } else { return mid; } } return left; }