自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

yweng18的博客

一个努力拼搏的IT创业者

  • 博客(201)
  • 收藏
  • 关注

原创 Mermaid 语法示例

Mermaid 语法整体上是 **正确的**,图表结构清晰、逻辑合理。不过有几个地方可以优化或需要注意,以确保渲染无误和提高可读性:

2025-05-21 12:43:06 791

原创 Decision Trees: Concepts, Principles, Development History, Characteristics, and Applications

Decision trees are a fundamental machine learning method known for their simplicity, interpretability, and versatility in both classification and regression tasks. This paper explores their conceptual foundation, principles, historical development, key cha

2025-05-20 10:11:45 663

原创 《决策科学与艺术》No1: 决策树:概念、原理、发展历史、特点及应用

决策树是一种广泛应用的机器学习和决策分析工具,以其直观的结构、可解释性和多功能性著称。本文详细介绍了决策树的基本概念、原理、发展历史、特点及其在商业、医疗、金融和工程等领域的应用。决策树通过树状模型表示决策过程,适用于分类和回归任务。其核心原理包括分裂准则(如基尼不纯度和信息增益)和剪枝技术,以避免过拟合。决策树的发展历程可追溯至20世纪50年代,现代应用中常作为集成学习方法的基础组件。尽管决策树具有可解释性强、鲁棒性高等优点,但也面临过拟合、不稳定性等挑战。总体而言,决策树在数据驱动决策中仍具有重要地位。

2025-05-20 10:05:24 941

原创 《决策科学和艺术》NO2:典型应用场景详解与 Mermaid 决策树示例

本文阐述了决策树的5个典型应用场景详解,每个案例提供了决策树示例。

2025-05-20 10:02:05 968

原创 《AI大模型应知应会100篇》第66篇:用大模型 + 向量数据库构建你的个性化知识库系统(附实战代码)

本文将手把手教你如何利用大语言模型(LLM)和向量数据库构建一套个性化的知识管理系统。你可以轻松实现知识的自动归类、快速检索与智能总结,打造属于你自己的“数字大脑”。文章包含完整代码实战、部署指南、可视化界面设计,并提供多个行业案例参考。

2025-05-16 23:53:09 984

原创 《AI大模型应知应会100篇》第65篇:基于大模型的文档问答系统实现

本文详解如何构建一个基于大语言模型(LLM)的文档问答系统,支持用户上传 PDF 或 Word 文档,并根据其内容进行智能问答。从文档解析、向量化、存储到检索与生成回答,手把手带你搭建完整流程。文末提供实战代码与部署指南,适合 AI 初中级开发者学习和参考。

2025-05-16 23:47:21 1032

原创 《AI大模型应知应会100篇》第64篇:构建你的第一个大模型 Chatbot

你是否想过,**自己也能构建一个像 ChatGPT 一样能对话、能思考的聊天机器人(Chatbot)**?别担心,这并不需要你是 AI 博士或资深工程师。本文将手把手带你完成 **从零到一构建一个完整的大模型 Chatbot** 的全过程。我们将使用 **Python + FastAPI 构建后端服务**,通过 **OpenAI API 接入 GPT-3.5 或 GPT-4 大模型**,并结合 **Streamlit 实现前端交互界面**,最后教你在本地和云端部署上线。无论你是 AI 初学者还是有一

2025-05-15 00:11:34 714

原创 《AI大模型应知应会100篇》第63篇:AutoGPT 与 BabyAGI:自主代理框架探索

随着大语言模型(LLM)技术的不断演进,**自主代理(Autonomous Agent)** 正在成为 AI 应用的新范式。它不仅能够理解用户意图,还能自主规划、执行任务,并通过反思不断优化自身行为。本文将深入解析两个当前最流行的开源自主代理框架 —— **AutoGPT** 和 **BabyAGI**,涵盖其核心原理、功能对比、实战部署及典型应用场景。无论你是想构建一个自动撰写周报的小助手,还是希望打造一个能完成复杂商业任务的智能代理,这篇文章都将为你提供详实的技术路径和实践指南。

2025-05-15 00:08:26 1143

原创 《AI大模型应知应会100篇》第62篇:TypeChat——类型安全的大模型编程框架

在构建 AI 应用时,一个常见的痛点是**大语言模型(LLM)输出的不确定性与格式不一致问题**。开发者往往需要手动解析、校验和处理模型返回的内容,这不仅增加了开发成本,也带来了潜在的运行时错误。**TypeChat** 是一个基于 **TypeScript 的类型安全大模型编程框架**,它通过将 TypeScript 类型系统与 JSON Schema 结合,确保 LLM 输出始终符合预定义的结构,并在必要时自动修复错误输出,从而大幅提升 AI 应用的稳定性与可维护性。本文将从零开始,带你了解 T

2025-05-14 23:57:03 1058

原创 《AI大模型应知应会100篇》第61篇:FastAPI搭建大模型API服务

随着大语言模型(LLM)在各行各业的广泛应用,构建一个**高性能、可扩展的大模型 API 服务**变得尤为重要。FastAPI 以其异步支持、类型安全、自动生成文档等优势,成为当前最流行的选择之一。本篇文章将从零开始,手把手教你使用 **FastAPI 搭建一个完整的大模型 API 服务**,涵盖项目初始化、接口设计、模型集成、安全认证、部署方案及性能优化等全流程内容,并附有完整的代码示例与部署指南。

2025-05-14 23:54:59 913

原创 《AI大模型应知应会100篇》第60篇:Pinecone 与 Milvus,向量数据库在大模型应用中的作用

本文将系统比较Pinecone与Milvus两大主流向量数据库的技术特点、性能表现和应用场景,提供详细的接入代码和最佳实践,帮助开发者为大模型应用选择并优化向量存储解决方案。

2025-05-12 23:27:30 999

原创 《AI大模型应知应会100篇》第59篇:Flowise:无代码搭建大模型应用

本文将详细探讨 Flowise 无代码平台的核心特性、使用方法和最佳实践,提供从安装到部署的全流程指南,帮助开发者和非技术用户快速构建复杂的大模型应用。文章结合实战案例与配置说明,图文并茂,适合人工智能初中级入门者阅读。

2025-05-12 23:17:32 1309

原创 《AI大模型应知应会100篇》第58篇:Semantic Kernel:微软的大模型应用框架

随着大模型(LLM)技术的快速发展,如何将这些强大的语言模型与传统代码系统进行无缝集成,成为开发者面临的核心挑战。为此,微软推出了 **Semantic Kernel(简称SK)** —— 一个融合了语义逻辑与程序逻辑的轻量级 SDK,支持 C# 和 Python,是连接传统开发与生成式 AI 的桥梁。本文将带你从零开始,深入理解 Semantic Kernel 的核心架构、关键组件和实战开发流程,并通过多个真实代码示例帮助你快速上手这一前沿框架。

2025-05-11 22:25:06 1134

原创 《AI大模型应知应会100篇》第57篇:LlamaIndex使用指南:构建高效知识库

在大模型(LLM)应用开发中,**知识库系统** 是提升模型准确性和专业性的关键。本文将带你全面掌握 **LlamaIndex(原 GPT Index)** 这一强大的开源框架,从基础架构讲起,通过多个实战代码示例,展示如何构建一个完整的、高效的 RAG(检索增强生成)知识库系统。我们将涵盖:- 数据摄入与处理- 向量索引与混合检索- 查询引擎定制与代理集成- 实战案例:企业文档库、个人知识助手等

2025-05-11 22:22:49 780

原创 《AI大模型应知应会100篇》第56篇:LangChain快速入门与应用示例

在大模型(LLM)应用开发领域,**LangChain** 是当前最主流、功能最强大的框架之一。它不仅提供了模块化的设计思想,还支持多种语言模型、提示工程、记忆机制、检索增强生成(RAG)、智能代理等功能。本文将带你从零开始,逐步掌握 LangChain 的核心概念和组件使用方式,并通过多个实战案例帮助你构建实际可用的 AI 应用系统,如知识库问答助手、数据分析代理、多轮对话客服机器人等。

2025-05-11 22:17:26 1132

原创 《AI大模型应知应会100篇》第55篇:大模型本地开发环境搭建

在人工智能尤其是大模型(LLM)领域,一个**高效、稳定、可扩展的本地开发环境**是每位开发者的第一块基石。本文将手把手带你完成从硬件选型到软件配置、再到环境验证的全流程搭建指南。无论你是刚入门的 AI 学习者、想要部署 LLaMA 或 ChatGLM 的研究者,还是希望进行本地微调与推理的工程师,这篇文章都将成为你不可或缺的“环境搭建手册”。

2025-05-11 22:15:43 1103

原创 《AI大模型应知应会100篇》第54篇:国产大模型API对比与使用指南

随着中国人工智能产业的快速发展,越来越多的国产大模型平台开始崭露头角。本文将系统梳理当前主流国产大模型 API(如 **百度文心、阿里通义千问、讯飞星火、智谱ChatGLM** 等)的功能特性、性能表现和接入方式,并通过实战代码演示其使用方法。我们还将设计一个统一调用框架,帮助开发者在多个平台之间灵活切换,并提供完整的部署流程、性能测试工具和错误处理建议,助你在国产AI生态中做出高效、安全的技术选型。

2025-05-10 23:40:58 1412

原创 《AI大模型应知应会100篇》第53篇:Hugging Face生态系统入门

在人工智能快速发展的今天,**Hugging Face**已成为自然语言处理(NLP)领域最具影响力的开源平台之一。它不仅提供丰富的预训练模型、强大的工具库,还构建了一个开放的模型共享社区。本文将深入介绍 **Hugging Face 生态系统的核心组件**,包括 `Transformers`、`Datasets`、`Tokenizers` 和 `Hub` 平台,并结合实际案例,带领你完成一个完整的 AI 应用开发流程:从数据准备、模型加载与微调,到本地部署和线上服务搭建。

2025-05-10 23:37:26 840

原创 《AI大模型应知应会100篇》第52篇:OpenAI API 使用指南与最佳实践

本文将带你从零开始掌握 **OpenAI API 的核心使用方法**,涵盖从基础调用到高级功能的完整实战路径。通过详细的代码示例、图文解析和可运行的 Python 脚本,帮助你快速上手 GPT-3.5、GPT-4 等模型,并深入理解如何在实际项目中高效、稳定地调用 OpenAI API。我们将重点讲解:- 如何配置 API 密钥并安全管理权限- 不同 API 类型(Chat/Completions/Assistants)的使用场景与差异- 如何优化 Token 成本与性能- 实战案例:客服助手、

2025-05-08 23:50:04 1322

原创 《AI大模型应知应会100篇》第51篇:大模型开发必备工具链介绍

本文将系统梳理**大模型开发全流程的核心工具链**,涵盖从开发环境搭建、代码库选型、效率提升工具到部署与监控等关键环节。通过实战示例、图文结合和可运行的代码片段,帮助人工智能初中级开发者快速构建一套高效、完整的大模型应用开发体系,顺利进入实际项目开发阶段。

2025-05-08 23:39:23 1345

原创 《AI大模型应知应会100篇》第52篇:OpenAI API使用指南与最佳实践

随着大模型的普及,**OpenAI API** 成为了开发者快速构建 AI 应用的重要工具。本文将为你提供一份**从基础调用到高级应用的 OpenAI API 全面实战指南**,涵盖:- **Chat API、Completions API、Assistants API 的核心区别与使用场景**- **流式响应、批量处理、异步调用等高效调用模式**- **函数调用(Function Calling)、对话管理、内容审核等高级功能**- **性能优化、Token 节约、成本控制等实用技巧**

2025-05-07 08:00:00 678

原创 《AI大模型应知应会100篇》第51篇:大模型开发必备工具链介绍

随着AI大模型技术的快速发展,开发者面临的挑战不仅在于算法与模型本身,更在于如何高效地构建、训练、调试和部署一个完整的AI系统。本文将**系统梳理大模型开发全流程的核心工具链**,从本地开发环境搭建到云端协作平台配置,帮助你快速构建一套完整、高效的AI开发体系。文章包含:- **VSCode、Jupyter、Colab等开发环境配置指南**- **PyTorch、Transformers、PEFT等主流库实战代码**- **Git LFS、Poetry、MLflow等效率提升工具详解**

2025-05-07 07:00:00 1141

原创 《AI大模型应知应会100篇》第50篇:大模型应用的持续集成与部署(CI/CD)实践

在AI大模型开发中,随着模型版本迭代频繁、依赖复杂、部署环境多样,**构建一套高效可靠的持续集成与持续交付(CI/CD)流程**显得尤为重要。本文将从零开始讲解如何为一个大模型项目设计完整的CI/CD流水线,涵盖代码提交、测试、打包、部署到生产环境的全过程。文章内容包含:- **实战型CI/CD架构图**- **GitHub Actions自动化配置示例**- **Docker镜像优化技巧**- **Kubernetes Helm部署模板**- **蓝绿发布与金丝雀发布的实现方法**- **

2025-05-06 20:37:58 1439

原创 《AI大模型应知应会100篇》第49篇:大模型应用的成本控制策略

随着AI大模型的广泛应用,其高昂的部署与运行成本成为企业面临的一大挑战。本文将从**技术架构、资源优化、业务模式**等多个维度出发,系统性地讲解如何在保障服务质量的前提下,实现**最优成本效益的大模型应用策略**。文章不仅包含详细的理论分析,还配有**实战代码、可视化仪表盘、成本计算器模板**等实用工具,适合人工智能初中级开发者和工程师参考学习。

2025-05-06 20:36:23 750

原创 《AI大模型应知应会100篇》第48篇:构建企业级大模型应用的架构设计

> **摘要**:本文将提供企业级大模型应用的端到端架构设计方案,从系统设计原则到技术栈选择,从高可用保障到安全合规,全面覆盖构建稳健、可扩展、安全的大模型应用所需的工程实践。适合初中级AI开发者学习部署实战技巧。

2025-05-04 13:06:12 1006

原创 《AI大模型应知应会100篇》第47篇:大模型应用的性能监控与优化

> **摘要**:本文将系统阐述大模型应用的性能监控、分析与优化方法,提供完整的可观测性解决方案和性能调优策略,帮助构建高效、稳定、可靠的大模型应用系统。适合初中级AI开发者学习部署实战技巧。

2025-05-04 11:02:05 821

原创 《AI大模型应知应会100篇》第46篇:大模型推理优化技术:量化、剪枝与蒸馏

随着AI大模型(如LLaMA、ChatGLM、Qwen等)的广泛应用,如何在有限资源下实现高性能推理成为关键挑战。本文将系统讲解**大模型推理优化的核心技术**:- **量化(Quantization)**- **剪枝(Pruning)**- **知识蒸馏(Knowledge Distillation)**并结合**实战案例**,展示如何在实际场景中应用这些技术,显著提升推理速度、降低显存占用,同时保持模型精度。

2025-05-03 23:38:05 1377 1

原创 《AI大模型应知应会100篇》长文版 请收藏-第46篇:大模型推理优化技术:量化、剪枝与蒸馏

在当今人工智能领域,大语言模型(LLM)的规模和复杂性呈指数级增长,这给模型的部署和推理带来了巨大的计算和内存挑战。本文将深入探讨大模型推理优化的前沿技术及实战应用,详细介绍量化、剪枝、蒸馏等核心方法的实际操作流程,帮助读者显著提升模型性能并降低资源需求,实现高效部署。

2025-05-03 23:36:30 855

原创 《AI大模型应知应会100篇》*精华加长版*第45篇:本地部署开源大模型的硬件需求与步骤:从入门到精通

随着开源大模型的快速发展,越来越多的开发者和企业希望在本地部署这些模型以实现数据安全、成本控制和个性化需求。然而,本地部署开源大模型需要考虑硬件选型、环境配置和模型优化等多个方面。本文将提供详尽的开源大模型本地部署全流程指南,从硬件选型、环境配置到模型优化,帮助读者以最经济实用的方式在自有基础设施上运行大模型,实现数据安全与成本平衡。

2025-05-03 02:00:00 996

原创 《AI大模型应知应会100篇》第44篇:大模型API调用最佳实践(附完整代码模板)

当你的应用突然面临每秒1000+请求时,如何保证大模型API调用既稳定又经济?本文通过12个实战代码片段、3套生产级架构方案和20+优化技巧,带你构建高性能的大模型服务。文末提供GitHub开源模板仓库(含Python/Node.js双版本

2025-05-02 17:47:52 920

原创 《AI大模型应知应会100篇》第43篇:大模型幻觉问题的识别与缓解方法

当AI系统自信满满地编造"量子计算机使用香蕉皮作为能源"这类荒谬结论时,我们不得不正视大模型的幻觉问题。本文通过15个真实案例解析、6种检测算法实现和3套工业级解决方案,带您掌握对抗AI幻觉的实战技能。文末提供可运行的幻觉检测代码库(含GPU加速版本)。

2025-05-02 13:28:53 932

原创 《AI大模型应知应会100篇》第42篇:大模型输出结果的后处理技术:从理论到实战

当大模型生成的内容如同未经雕琢的原石——虽蕴含价值却遍布毛刺。本文将以"外科手术"式解析,带您探索如何通过后处理技术将GPT-4等模型的原始输出转化为可落地的工业级解决方案。从金融报告生成到医疗问答系统,我们将揭示OpenAI、Anthropic等顶尖机构的幕后秘技。

2025-05-01 23:47:08 1133

原创 《AI大模型应知应会100篇》第41篇:多轮对话设计:构建高效的交互式应用

在银行客服机器人突然准确回答出用户第7次追问的信用卡额度规则时,在医疗问诊系统记住患者既往病史的瞬间,多轮对话技术正在创造令人惊叹的交互体验。本文将以工业级案例为经,核心技术为纬,带您深入对话系统的"记忆宫殿"。

2025-05-01 23:36:42 953

原创 《Python实战进阶》 No46:CPython的GIL与多线程优化

全局解释器锁(GIL)是CPython的核心机制,它保证了线程安全却限制了多核性能。本节通过**concurrent.futures**、**C扩展优化**和**多进程架构**,实战演示如何突破GIL限制,特别针对AI模型推理加速场景,提供可直接复用的性能优化方案。

2025-04-30 23:57:30 528

原创 《Python实战进阶》No45:性能分析工具 cProfile 与 line_profiler

在AI模型开发中,代码性能直接影响训练效率和资源消耗。本节通过**cProfile**和**line_profiler**工具,实战演示如何定位Python代码中的性能瓶颈,并结合NumPy向量化操作优化模型计算流程。案例包含完整代码与性能对比数据,助你掌握从全局到局部的性能分析方法。

2025-04-30 23:55:37 801

原创 《AI大模型应知应会100篇》【精华】第40篇:长文本处理技巧:克服大模型的上下文长度限制

在大语言模型应用中处理超出其上下文窗口长度的长文本是一项挑战。本文面向初学者介绍长文本处理的常见难题,以及一系列有效策略和技巧,包括如何对文档进行合理分块(固定大小 vs 语义分块、重叠分块等)、利用层次化摘要(Map-Reduce)等框架克服上下文长度限制,并讨论这些方法在问答系统、大型报告分析、书籍理解、长文生成等长文档应用中的最佳实践。文章通过**实例代码**演示了OpenAI GPT-4和LangChain在长文本处理中的用法,并探讨更长上下文的模型(如Anthropic Claude的100K上下

2025-04-29 20:29:26 1303

原创 《AI大模型应知应会100篇》强烈推荐-加餐篇:AI Agent正当时!2025年必须了解的8个国内外AI Agent工具框架!

如今,人工智能领域正迎来“智能体(AI Agent)”的火热浪潮。**AI Agent** 指的是基于AI大模型底座技术,能够自主感知环境、决策并执行任务以实现各种计算目标的人工智能软件系统,简单来说,它就像赋予计算机**自己动手完成复杂任务**的能力,从整理信息、调用工具到与人互动都不在话下。2025年,各种国内外的 AI Agent 工具框架如雨后春笋般涌现,帮助开发者**快速构建属于自己的智能体**应用。本文将以通俗有趣的方式,带你认识 **8个当前主流的AI Agent框架/平台**,包括它们的特色

2025-04-29 08:16:14 1028

原创 《AI大模型应知应会100篇》(进阶版-强烈推荐)多模态大模型应用:文本、图像和音频的协同处理

多模态大模型(Multimodal Large Models)正在引领新一波人工智能应用浪潮,它们能够同时处理文本、图像、音频等多种数据形式,在创意生成、内容理解和人机交互方面展现出强大能力。例如,我们可以使用**GPT-4**视觉版识别图片内容,用**DALL·E 3**根据描述生成精美图像,用语音模型将文字转换为自然语音等等。本文面向具有一定开发经验的读者,深入浅出地介绍多模态大模型的核心概念和技术要点,并通过**图文并茂**的实例演示说明文本、图像和音频协同处理的应用场景。我们将重点解析三个典型案例:

2025-04-28 23:36:23 1025

原创 《AI大模型应知应会100篇》第39篇:多模态大模型应用:文本、图像和音频的协同处理

随着人工智能技术的发展,多模态大模型(Multimodal Large Models)已经成为AI领域的热点之一。这些模型能够同时处理文本、图像、音频等多种模态数据,极大地提升了AI系统的感知能力和交互体验。本文将系统介绍多模态大模型的工作原理、关键技术以及实际应用场景,并通过具体案例帮助读者快速上手构建跨模态应用。

2025-04-28 23:18:54 934

原创 《AI大模型应知应会100篇》第38篇:大模型与知识图谱结合的应用模式

随着大模型(如GPT、BERT等)和知识图谱技术的快速发展,两者的融合为构建更精准、可解释的智能系统提供了新的可能性。本文将深入探讨大模型与知识图谱的能力互补性、融合架构设计以及实际应用场景。通过案例分析与技术实现,帮助读者理解如何结合这两种技术的优势,解决复杂领域的实际问题。

2025-04-27 23:38:00 1175

厦门大学解析:大模型技术及其应用实践全貌

内容概要:本文由厦门大学副教授林子雨撰写,详细介绍了大模型概念、发展历程及其在各大领域的应用。从图灵测试、人工智能的发展简史开始,阐述了大模型的概念与发展阶段,特别是萌芽期(1950-2005)、沉淀期(2006-2019)、爆发期(2020-今)。文中列举了国内外典型的大模型产品如ChatGPT、DeepSeek、Sora等,并详述了大模型在自然语言处理、计算机视觉、语音识别等领域的应用。此外,文章还讨论了AIGC的应用实践,例如文本生成、图像生成、视频生成,以及在辅助编程、搜索和智能办公中的表现。最终展望了大模型对未来工作生活和社会带来的深远影响。 适用人群:适合关注人工智能和大模型技术的专业人士和爱好者阅读。 使用场景及目标:帮助读者深入了解大模型技术的原理及其在各个领域的实际应用;指导企业和开发者选择和应用适当的大模型以优化业务流程或创新产品。 其他说明:文末提供了具体的案例实操,如使用DeepSeek进行对话、讯飞智文生成PPT、文心一格制作图画,为初学者提供了实践指导。

2025-03-05

创业者必备:解读DeepSeek引发的AI技术与应用革新

内容概要:本文由360集团创始人周鸿祎撰写,深入探讨了DeepSeek这一前沿AI技术及其对各行各业所带来的巨大机遇。文中详细阐述了人工智能的发展历程,特别是大模型的演进,并指出了DeepSeek如何在技术和用户体验方面取得重大突破,引领新的工业革命,以及中国在该领域的创新和发展前景。同时介绍了如何借助DeepSeek实现具体的企业应用,涵盖知识库建设、智能体开发等多个方面的实践经验。 适用人群:针对政府机构、企业和创新创业者的高级管理层和技术领导者,旨在提供对当前AI前沿技术和未来发展策略的理解。 使用场景及目标:适用于希望通过先进技术提升竞争力的单位或个人;目的在于引导读者建立正确的AI意识,了解最新的技术动向和实施路径,为未来的战略规划打下坚实的基础。 其他说明:文档还强调了在全球范围内争夺大模型主导地位的竞争环境下,中国企业应该如何抓住机遇实现快速发展,以及如何克服现有挑战,确保安全可靠的应用。

2025-03-05

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除