【数据挖掘笔记】分类

理论

  • Hunt算法是许多决策树算法的基础,包括ID3、C4.5和CART
  • 增益率(gain ratio):如决策树算法C4.5,采用增益率的划分标准来评估划分
  • 树剪枝tree-pruning:决策树过大容易过拟合overfitting,通过树剪枝(修剪初始决策树的分支),减小决策树的规模,提高决策树的泛化能力
  • 分类模型的误差:训练误差(training error)、泛化误差(generalization error)。一个好的分类模型不仅要能够很好地拟合训练数据,还需对未知样本进行准确的分类。
  • 注意:决策树很小时,训练和检验误差都很大——模型拟合不足(model underfitting),这是因为模型尚未学习到数据的真实结构。随着决策树中结点数增加,训练和检验误差都降低。然而,一旦树的规模太大,即使训练误差还在继续降低,但检验误差开始增大——模型过分拟合(model overfitting)。
  • 奥卡姆剃刀:给定两个具有相同泛化误差的模型,较简单的模型比较复杂的模型更可取。
  • 交叉验证:二折交叉验证:数据分为两个相同大小的子集,首先选择其一作为训练集,另一个作为检验集,然后交换两个集合的角色。k二折交叉验证:数据分为k个相同大小的子集,选择其一作为检验集,其余全作为训练集,重复k次,使得每份数据都用于检验恰好一次。
  • k二折交叉验证的特殊情况:留一leave out方法:k=N(数据集大小)
  • 分类的一般过程:学习阶段(构建分类模型)+分类阶段(使用模型预测给定数据的类标号)

半监督分类使用有类标号+无类标号的数据 构建分类器
主动学习

迭代的监督学习,适合数据丰富但类标号稀缺的情况。

该学习算法是主动的,因其有目的地向用户询问类标号。

目标:使用尽可能少的有标号示例获得高准确率。

迁移学习改编已有的分类模型→用于目标任务

理论+实践

基于规则的分类器

  • 分类规则质量的度量指标:覆盖率coverage(规则覆盖的比率)、准确率accuracy(在它覆盖的元组中,能被规则正确分类的比率)

  • 基于规则的分类器所产生的的规则集的两个重要性质:互斥规则(不存在两条规则被同一记录出发,即规则是互斥的)、穷举规则(每条记录都至少被一条规则覆盖)→→→保证每条记录被且仅被一条规则覆盖。
  • 提取分类规则的方法:直接方法(直接从数据中提取分类规则)、间接方法(从其他分类模型(如决策树和神经网络)提取分类规则)。【原则上,决策树从根节点到叶结点的每条路径=都可表示为一条分类规则】

最近邻分类

  • 样例z的k-最近邻:与z距离最近的k个数据点

  • 最近邻分类器基于局部信息预测,而决策树与基于规则的分类器试图找到一个拟合整个输入空间的全局模型。正是因为这样的局部分类决策,最近邻分类器(k很小时)对噪声非常敏感
  • 最近邻分类器可以生成任意形状的决策边界,与决策树与基于规则的分类器通常所局限的直线决策边界相比,能够提供更灵活的模型表示。

 决策树分类

  • ∈监督学习
  • 优点:无需任何领域知识或参数设置,因而适合探测式知识发现;能够处理高维数据;树形式表示直观,易于理解。
  • 噪声/离群点——树剪枝,识别并剪去此类分枝
  • 各类决策树算法:ID3(Iterative Dichotomister, ID3)、C4.5(ID3的后续)、CART(Classification and Regression Trees)——各自使用不同的属性选择度量(选择分裂准则):信息增益(ID3使用;在决策树算法的学习过程中,信息增益是特征选择的一个重要指标,它定义为一个特征能够为分类系统带来多少信息,带来的信息越多,说明该特征越重要,相应的信息增益也就越大)增益率(C4.5使用)、基尼指数(Gini指数,CART使用;与熵一样,基尼系数表征的也是事件的不确定性,将熵定义式中的“-logpi”替换为 1-pi 就是基尼系数
  • 决策树归纳的增量版本:重构 从先前训练数据学习得到的决策树,而非从头开始学习一棵新树。
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from matplotlib.font_manager import FontProperties
from sklearn import datasets
from sklearn.tree import DecisionTreeClassifier
plt.show()
plt.rcParams['font.sans-serif']=['SimHei']

############获取数据############
iris_data = datasets.load_iris()
X = iris_data.data[:, [2, 3]]
y = iris_data.target
label_list = ['山鸢尾', '杂色鸢尾', '维吉尼亚鸢尾']

############构建决策边界############
def plot_decision_regions(X, y, classifier=None):
    marker_list = ['o', 'x', 's']
    color_list = ['r', 'b', 'g']
    cmap = ListedColormap(color_list[:len(np.unique(y))]) # 背景色

    # 生成网格点坐标矩阵
    x1_min, x1_max = X[:, 0].min()-1, X[:, 0].max()+1
    x2_min, x2_max = X[:, 1].min()-1, X[:, 1].max()+1
    t1 = np.linspace(x1_min, x1_max, 666)
    t2 = np.linspace(x2_min, x2_max, 666)
    x1, x2 = np.meshgrid(t1, t2) # 生成网格点坐标矩阵
    y_hat = classifier.predict(np.array([x1.ravel(), x2.ravel()]).T)
    y_hat = y_hat.reshape(x1.shape)
    plt.contourf(x1, x2, y_hat, alpha=0.2, cmap=cmap)   # 绘制轮廓等高线  alpha参数设置透明度
    plt.xlim(x1_min, x1_max)
    plt.ylim(x2_min, x2_max)

    # plot class samples
    for ind, clas in enumerate(np.unique(y)):
        plt.scatter(X[y == clas, 0], X[y == clas, 1], alpha=0.8, s=50,
                    c=color_list[ind], marker=marker_list[ind], label=label_list[clas])


############训练模型############
tree = DecisionTreeClassifier(criterion='gini', max_depth=5, random_state=1)
tree.fit(X, y)

############可视化############
plot_decision_regions(X, y, classifier=tree)
plt.xlabel('花瓣长度(cm)')
plt.ylabel('花瓣宽度(cm)')
plt.legend()
plt.show()
鸢尾花数据集 决策树分类

贝叶斯分类

  • 对属性集和类变量的概率关系建模 

朴素贝叶斯分类器

  • 朴素贝叶斯分类 假定一个属性值在给定类上的影响 独立于其他属性值,该假定即“类条件独立性”。做该假定是为了简化计算,并在此意义下称为“朴素的”
  • 估计类条件概率时,假设属性之间条件独立:如果P(X,Y|Z)=P(X|Z)P(Y|Z),或等价地P(X|Y,Z)=P(X|Z),则称事件X,Y对于给定事件Z是条件独立的,也就是说,当Z发生时,X发生与否与Y发生与否是无关的。
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB, GaussianNB
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from matplotlib.font_manager import FontProperties
import numpy as np
import matplotlib as mpl
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
plt.rcParams['font.sans-serif']=['SimHei']

############获取数据############
iris_data = datasets.load_iris()
X = iris_data.data[:, :2]
y = iris_data.target
label_list = ['山鸢尾', '杂色鸢尾', '维吉尼亚鸢尾']


############构建决策边界############
def plot_decision_regions(X, y, classifier=None):
        marker_list = ['o', 'x', 's']
        color_list = ['r', 'b', 'g']
        cmap = ListedColormap(color_list[:len(np.unique(y))])  # 背景色

        # 生成网格点坐标矩阵
        x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
        x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
        t1 = np.linspace(x1_min, x1_max, 666)
        t2 = np.linspace(x2_min, x2_max, 666)
        x1, x2 = np.meshgrid(t1, t2)  # 生成网格点坐标矩阵
        y_hat = classifier.predict(np.array([x1.ravel(), x2.ravel()]).T)
        y_hat = y_hat.reshape(x1.shape)
        plt.contourf(x1, x2, y_hat, alpha=0.2, cmap=cmap)  # 绘制轮廓等高线  alpha参数设置透明度
        plt.xlim(x1_min, x1_max)
        plt.ylim(x2_min, x2_max)

        # plot class samples
        for ind, clas in enumerate(np.unique(y)):
                plt.scatter(X[y == clas, 0], X[y == clas, 1], alpha=0.8, s=50,
                            c=color_list[ind], marker=marker_list[ind], label=label_list[clas])


############训练模型############
clf = Pipeline([
         ('sc', StandardScaler()),
         ('clf', GaussianNB())])
ir = clf.fit(X, y.ravel()) # 利用训练数据进行拟合

############可视化############
plot_decision_regions(X, y, classifier=clf)
plt.xlabel('花萼长度(cm)')
plt.ylabel('花萼宽度(cm)')
plt.legend()
plt.show()

贝叶斯信念网络

  • Bayesian belief networks, BBN 贝叶斯网络/信念网络/概率网络:不要求给定类的所有属性都条件独立,而是允许指定哪些属性条件独立
  • 因数据和先验知识以概率方式相结合,故该方法对模型的过拟合是非常鲁棒的

人工神经网络

  • 感知器Perceptron:对输入加权求和,减去偏置因子,然后考察结果的符号→→得到输出值y。训练:不断调整权值参数w,直到输出和训练样例的实际输出一致。

  • 多层人工神经网络:比感知器(单层的前馈神经网络)结构复杂,因网络输入层和输出层之间可能包含多个中间层(隐藏层)。【前馈free-forward神经网络:每层结点仅和下一层结点相连】【递归recurrent神经网络:允许同一层结点相连或一层结点连到前面各层结点】
  • 激活函数:激活函数是用来加入非线性因素的,解决线性模型所不能解决的问题。
  • 梯度下降方法:可用于学习神经网络中输出结点和隐藏结点的权值。【反向传播:梯度下降算法的每次迭代包括前向+后向阶段。前向:使用前一次迭代所得到的权值,计算网络中每个神经元的输出值,即先计算第k层神经元的输出,再计算第k+1层的输出。反向:使用第k+1层神经元的误差→估计第k层神经元的误差

支持向量机

  • 工作流程:使用一种非线性映射,将原训练数据映射到较高维,在新的维上,它搜索最佳分离超平面(即将一个类的元组与其他类分离的“决策边界”)。到足够高维的、合适的非线性映射,两个类的数据总能被超平面分开。
  • SVM 高维数据:能够很好地应用于高维数据,避免维灾难。
  • SVM 决策边界:它使用训练实例的一个子集【即支持向量】表示决策边界

  • SVM特质:SVM学习问题可以表示为凸优化问题,因而可以利用已知的有效算法发现目标函数的全局最小值;而其他分类方法(如基于规则的分类器、人工神经网络)都采用一种基于贪心学习的策略来搜索假设空间——一般只能获得局部最优解。 

频繁模式分类

  • 关联规则分类:①挖掘数据,得到频繁项集;②分析频繁项集,产生每个类的关联规则(满足置信度与支持度标准);③形成基于规则的分类器。

组合方法

  • 随机森林:专门为决策树分类器设计的组合方法
  • 混淆矩阵、准确率、精准率(查准率,precision)、召回率(查全率,recall)
  • 来自:精确率、召回率、F1 值、ROC、AUC 各自的优缺点是什么? - 东哥起飞的回答 - 知乎 https://www.zhihu.com/question/30643044/answer/510317055
混淆矩阵

  

准确率

精准率

召回率

  

文献阅读

赵秦怡,王丽珍,罗桂兰.基于co-location模式的空间分类算法[J].计算机应用与软件,2018,35(03):225-229.

  • 背景:在特定的空间分类任务中,对象的类别和自身属性相关较小,和近邻对象的空间特征相关较大,传统的空间分类方法并不适用

  • 方法:提出一种基于co-location模式的空间分类挖掘算法算法挖掘含不同类别特征的空间co-location模式,转化为分类规则,获得兴趣度较高的分类规则集。分类阶段先查询待分类对象的空间近邻,概化为空间特征,挑选适应的分类规则进行分类。

  • 结果:实验结果表明这是一种高效的空间分类算法

  • 6
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值