BZOJ 1150: [CTSC2007]数据备份Backup 链表

1150: [CTSC2007]数据备份Backup

Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 2505 Solved: 1007
[Submit][Status][Discuss]

Description

  你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份。然而数据备份的工作是枯燥乏味
的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏的乐趣。已知办公
楼都位于同一条街上。你决定给这些办公楼配对(两个一组)。每一对办公楼可以通过在这两个建筑物之间铺设网
络电缆使得它们可以互相备份。然而,网络电缆的费用很高。当地电信公司仅能为你提供 K 条网络电缆,这意味
着你仅能为 K 对办公楼(或总计2K个办公楼)安排备份。任一个办公楼都属于唯一的配对组(换句话说,这 2K
个办公楼一定是相异的)。此外,电信公司需按网络电缆的长度(公里数)收费。因而,你需要选择这 K 对办公
楼使得电缆的总长度尽可能短。换句话说,你需要选择这 K 对办公楼,使得每一对办公楼之间的距离之和(总距
离)尽可能小。下面给出一个示例,假定你有 5 个客户,其办公楼都在一条街上,如下图所示。这 5 个办公楼分
别位于距离大街起点 1km, 3km, 4km, 6km 和 12km 处。电信公司仅为你提供 K=2 条电缆。

  上例中最好的配对方案是将第 1 个和第 2 个办公楼相连,第 3 个和第 4 个办公楼相连。这样可按要求使用
K=2 条电缆。第 1 条电缆的长度是 3km-1km=2km ,第 2 条电缆的长度是 6km-4km=2km。这种配对方案需要总长
4km 的网络电缆,满足距离之和最小的要求。
Input

  输入的第一行包含整数n和k,其中n(2 ≤ n ≤100 000)表示办公楼的数目,k(1≤ k≤ n/2)表示可利用
的网络电缆的数目。接下来的n行每行仅包含一个整数(0≤ s ≤1000 000 000), 表示每个办公楼到大街起点处
的距离。这些整数将按照从小到大的顺序依次出现。
Output

  输出应由一个正整数组成,给出将2K个相异的办公楼连成k对所需的网络电缆的最小总长度。

Sample Input

5 2

1

3

4

6

12

Sample Output

4

HINT

Source

题解:
可以发现每次取的两个肯定是相邻的,所以可以把相邻的两个的距离差存下来放进单调队列中。
转化为取一些数,但不能取相邻的两个,使得取出的数的和最小。
就和bzoj 2288一样了
每次取出队列中最小的元素,同时将它两边的元素删掉,然后再将c[pre[pos]]+c[nxt[pos]]-c[pos]放进队列中,代表不取这个元素而取其两边的元素。

code:

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<iostream>
using namespace std;

const int N = 1000010;

inline int read(){
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') {x=x*10+ch-'0';ch=getchar();}
    return x*f;
}

struct node{
    int pos,val;

    bool operator < (const node &a) const{
        return a.val<val;
    }
};

int n,k,a[N],delet[N],c[N];
priority_queue<node> q;
int ans=0,pre[N],nxt[N];

int main(){
    n=read(),k=read();
    for(int i=1;i<=n;i++) a[i]=read();
    for(int i=1;i<n;i++) c[i]=a[i+1]-a[i];
    for(int i=1;i<n;i++){
        node u;u.pos=i;
        u.val=c[i];q.push(u);
        pre[i]=i-1,nxt[i]=i+1;
    }
    pre[1]=nxt[n-1]=0;
    while(k--){
        node u=q.top();q.pop();
        while(delet[u.pos]&&(!q.empty())) {
            u=q.top();q.pop();}
        ans+=u.val;
        if(!pre[u.pos]){
            pre[nxt[nxt[u.pos]]]=0;
            delet[u.pos]=true,delet[nxt[u.pos]]=true;
        }
        else if(!nxt[u.pos]){
            nxt[pre[pre[u.pos]]]=0;
            delet[u.pos]=true,delet[pre[u.pos]]=true;
        }
        else{
            u.val=c[u.pos]=c[nxt[u.pos]]+c[pre[u.pos]]-c[u.pos];
            delet[nxt[u.pos]]=true,delet[pre[u.pos]]=true;
            if(nxt[nxt[u.pos]]) pre[nxt[nxt[u.pos]]]=u.pos;
            if(pre[pre[u.pos]])nxt[pre[pre[u.pos]]]=u.pos;
            nxt[u.pos]=nxt[nxt[u.pos]];
            pre[u.pos]=pre[pre[u.pos]];
            q.push(u);
        }
    }
    printf("%d\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值