上个月青岛网络赛的题目,看了半天博客愣是没看懂。。。
然后查了好久的资料TUT
最大流-最小割的定义:最大流最小割定理是网络流理论的重要定理。是指在一个网络流中,能够从源点到达汇点的最大流量等于如果从网络中移除就能够导致网络流中断的边的集合的最小容量和。即在任何网络中,最大流的值等于最小割的容量。
通过最大流sap算法求出来的是最小割的边权和,而不是边数。所以令w=w*(E+1)+1 求出来的最大流 = maxflow / (E+1) 最小割的最小割边数 = maxflow % (E+1);
网上写的最小割的博客看不懂TUT 还是太菜。。
#include<bits/stdc++.h>
using namespace std;
const int N=234;
const int M=500010;
const int INF=0x3f3f3f3f;
int n,m;
struct node
{
int u,v,next,cap;
}eage[M];
int source,sink;
int cur[N],dep[N],gap[N];
int head[N];
int top;
int S[N];
void Add(int u,int v,int w)
{
eage[top].u=u;
eage[top].v=v;
eage[top].cap=w;
eage[top].next=head[u];
head[u]=top++;
eage[top].u=v;
eage[top].v=u;
eage[top].cap=0;
eage[top].next=head[v];
head[v]=top++;
}
void BFS()
{
queue<int>q;
memset(dep,-1,sizeof(dep));
memset(gap,0,sizeof(gap));
gap[0]=1;
dep[sink]=0;
q.push(sink);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=head[u];i!=-1;i=eage[i].next)
{
int v=eage[i].v;
if(dep[v]==-1)
{
q.push(v);
dep[v]=dep[u]+1;
gap[dep[v]]++;
}
}
}
}
int Sap()
{
BFS();
memcpy(cur,head,sizeof(head));
int tot=0;
int u=source;
int ans=0;
while(dep[source]<n)
{
if(u==sink)
{
int Min=INF;
int inser;
for(int i=0;i<=tot-1;i++)
{
if(Min>eage[S[i]].cap)
{
Min=eage[S[i]].cap;
inser=i;
}
}
for(int i=0;i<=tot-1;i++)
{
eage[S[i]].cap-=Min;
eage[S[i]^1].cap+=Min;
}
ans+=Min;
tot=inser;
u=eage[S[tot]].u;
}
if(u!=sink&&gap[dep[u]-1]==0)
break;
int v;
int i;
for(i=cur[u];i!=-1;i=eage[i].next)
{
v=eage[i].v;
if(eage[i].cap&&dep[v]+1==dep[u])
{
break;
}
}
if(i!=-1)
{
cur[u]=i;
S[tot++]=i;
u=v;
continue;
}
int Min=n;
for(int i=head[u];i!=-1;i=eage[i].next)
{
int v=eage[i].v;
if(eage[i].cap&&dep[v]<Min)
{
Min=dep[v];
cur[u]=i;
}
}
gap[dep[u]]--;
dep[u]=Min+1;
gap[dep[u]]++;
if(u!=source)u=eage[S[--tot]].u;
}
return ans;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
memset(head,-1,sizeof(head));
top=0;
scanf("%d%d",&n,&m);
scanf("%d%d",&source,&sink);
for(int i=1;i<=m;i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
Add(u,v,w*(m+1)+1);
}
int ans=Sap();
printf("%d\n",ans%(m+1));
}
return 0;
}