BP神经网络识别手写数字项目解析及matlab实现

BP神经网络指传统的人工神经网络,相比于卷积神经网络(CNN)来说要简单些。
人工神经网络具有复杂模式和进行联想、推理记忆的功能, 它是解决某些传统方法所无法解决的问题的有力工具。目前, 它日益受到重视, 同时其他学科的发展, 为其提供了更大的机会。1986 年, Romelhart 和Mcclelland提出了误差反向传播算法(Error Back Propagation Algorithm) ,简称BP 算法,由于多层前馈网络的训练经常采用误差反向传播算法, 人们也把多层前馈网络称为BP 网络。

为了便于阅读,下面说一下全文的逻辑顺序:
1,通俗说下神经网络的结构和工作原理,简单好理解,推荐观看
2,逆向传播算法的数学推导,如果觉得太复杂可以暂时跳过
3,matlab代码和图像库
 

(1) 大白话讲解传统神经网络

首先,我们看一下神经网络的基本单元——单个的神经元:

图中圆形表示一个神经元,我们知道,一个神经元接收相邻的神经元传来的刺激,神经元对这些刺激以不同的权重进行积累,到一定的时候产生自己的刺激将其传递给一些与它相邻的神经元。这样工作的无数个神经元便构成了人脑对外界的感知。而人脑对世界的学习的机制就是通过调节这些相邻连接的神经元刺激的权重。
在图中,周围神经元传过来的刺激表示为Y,权重表示为W,圆形表示的神经元得到的刺激是所有刺激按照权重累加起来,即

博主设置当前文章不允许评论。

没有更多推荐了,返回首页