用python实现全程自动连连看

本文作者小圆分享了一篇使用Python编写的全自动连连看游戏脚本,通过窗体定位、屏幕截图和图像处理技术,实现了一分钟内完成游戏。脚本详细解释了如何判断图像匹配、消除过程,并提供了交流学习的平台。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

嗨嗨,我是小圆。又是美好的一天啊 ~

可惜大周末的我还在上班,那今天就给大家分享一个小游戏。

连连看大家应该都玩过吧,就算没玩过,那也应该看到过吧。嘿嘿,有些连连看还是有难度的,有的有时间限制,就会有点难过关,于是我就用python写了一个脚本代码,一分钟一把游戏,还是蛮快的。有时候用它在上班的时候摸鱼,也是蛮快乐的 ~

请添加图片描述

ok,话不多说,那我就直接上代码了 !

模块导入 :

import cv2
import numpy as np
import win32api
import win32gui
import win32con
from PIL import ImageGrab
import time
import random

窗体标题 用于定位游戏窗体

WINDOW_TITLE = "连连看"

时间间隔随机生成[MIN,MAX]

TIME_INTERVAL_MAX = 0.06
TIME_INTERVAL_MIN = 0.1

游戏区域距离顶点的x偏移

MARGIN_LEFT = 10

游戏区域距离顶点的y偏移

MARGIN_HEIGHT = 180

纵向的方块数量

V_NUM = 11

方块宽度

POINT_WIDTH = 31

方块高度

POINT_HEIGHT = 35

空图像编号

EMPTY_ID = 0

切片处理时候的左上、右上坐标

SUB_LT_X = 8
SUB_LT_Y = 8
SUB_RB_X = 27
SUB_RB_Y = 27

游戏最多消除次数

MAX_ROUND = 200

获取窗体坐标位置

def getGameWindow():
    # FindWindow(lpClassName=None, lpWindowName=None)  窗口类名 窗口标题名
    window = win32gui.FindWindow(None, WINDOW_TITLE)

    # 没有定位到游戏窗体
    while not window:
        print('Failed to locate the game window , reposition the game window after 10 seconds...')
        time.sleep(10)
        window = win32gui.FindWindow(None, WINDOW_TITLE)

    # 定位到游戏窗体
    # 置顶游戏窗口
    win32gui.SetForegroundWindow(window)
    pos = win32gui.GetWindowRect(window)
    print("Game windows at " + str(pos))
    return (pos[0], pos[1])

获取屏幕截图

def getScreenImage():
    print('Shot screen...')
    # 获取屏幕截图 Image类型对象
    scim = ImageGrab.grab()
    scim.save('screen.png')
    # 用opencv读取屏幕截图
    # 获取ndarray
    return cv2.imread("screen.png")

从截图中分辨图片 处理成地图

def getAllSquare(screen_image, game_pos):
    print('Processing pictures...')
    # 通过游戏窗体定位
    # 加上偏移量获取游戏区域
    game_x = game_pos[0] + MARGIN_LEFT
    game_y = game_pos[1] + MARGIN_HEIGHT

    # 从游戏区域左上开始
    # 把图像按照具体大小切割成相同的小块
    # 切割标准是按照小块的横纵坐标
    all_square = []
    for x in range(0, H_NUM):
        for y in range(0, V_NUM):
            # ndarray的切片方法 : [纵坐标起始位置:纵坐标结束为止,横坐标起始位置:横坐标结束位置]
            square = screen_image[game_y + y * POINT_HEIGHT:game_y + (y + 1) * POINT_HEIGHT,
                     game_x + x * POINT_WIDTH:game_x + (x + 1) * POINT_WIDTH]
            all_square.append(square)

    # 因为有些图片的边缘会造成干扰,所以统一把图片往内缩小一圈
    # 对所有的方块进行处理 ,去掉边缘一圈后返回
    finalresult = []
    for square in all_square:
        s = square[SUB_LT_Y:SUB_RB_Y, SUB_LT_X:SUB_RB_X]
        finalresult.append(s)
    return finalresult

判断列表中是否存在相同图形
存在返回进行判断图片所在的id
否则返回-1

def isImageExist(img, img_list):
    i = 0
    for existed_img in img_list:
        # 两个图片进行比较 返回的是两个图片的标准差
        b = np.subtract(existed_img, img)
        # 若标准差全为0 即两张图片没有区别
        if not np.any(b):
            return i
        i = i + 1
    return -1

获取所有方块类型

def getAllSquareTypes(all_square):
    print("Init pictures types...")
    types = []
    # number列表用来记录每个id的出现次数
    number = []
    # 当前出现次数最多的方块
    # 这里我们默认出现最多的方块应该是空白块
    nowid = 0;
    for square in all_square:
        nid = isImageExist(square, types)
        # 如果这个图像不存在则插入列表
        if nid == -1:
            types.append(square)
            number.append(1);
        else:
            # 若这个图像存在则给计数器 + 1
            number[nid] = number[nid] + 1
            if (number[nid] > number[nowid]):
                nowid = nid
    # 更新EMPTY_ID
    # 即判断在当前这张图中的空白块id
    global EMPTY_ID
    EMPTY_ID = nowid
    print('EMPTY_ID = ' + str(EMPTY_ID))
    return types

将二维图片矩阵转换为二维数字矩阵
注意因为在上面对截屏切片时是以列为优先切片的
所以生成的record二维矩阵每行存放的其实是游戏屏幕中每列的编号
换个说法就是record其实是游戏屏幕中心对称后的列表

def getAllSquareRecord(all_square_list, types):
    print("Change map...")
    record = []
    line = []
    for square in all_square_list:
        num = 0
        for type in types:
            res = cv2.subtract(square, type)
            if not np.any(res):
                line.append(num)
                break
            num += 1
        # 每列的数量为V_NUM
        # 那么当当前的line列表中存在V_NUM个方块时我们认为本列处理完毕
        if len(line) == V_NUM:
            print(line);
            record.append(line)
            line = []
    return record

判断给出的两个图像能否消除

def canConnect(x1, y1, x2, y2, r):
    result = r[:]

    # 如果两个图像中有一个为0 直接返回False
    if result[x1][y1] == EMPTY_ID or result[x2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值