哈喽 ~ 大家好,我是小圆
在我们工作的时候~经常会做一些重复的事情
比如:阅读新闻、发邮件、查看天气、清理文件夹等等
那有没有办法缩短甚至取消做这些东西的时间呢~
自然是有的!!那就是使用自动化脚本拉~
这样就不用我们手动一次又一次地完成这些任务了
今天就给大家带来8个python自动化脚本提高工作效率~
1.自动化阅读网页新闻
这个脚本能够实现从网页中抓取文本,然后自动化语音朗读
当你想听新闻的时候,这是个不错的选择。
代码分为两大部分,第一通过爬虫抓取网页文本呢,第二通过阅读工具来朗读文本。
需要的第三方库:
- Beautiful Soup
经典的HTML/XML文本解析器,用来提取爬下来的网页信息;
- requests
好用到逆天的HTTP工具,用来向网页发送请求获取数据;
- Pyttsx3
将文本转换为语音,并控制速率、频率和语音;
具体代码如下
python学习交流Q群:770699889 ###
import pyttsx3
import requests
from bs4 import BeautifulSoup
voices = engine.getProperty('voices')
newVoiceRate = 130 ## Reduce The Speech Rate
engine.setProperty('rate',newVoiceRate)
engine.setProperty('voice', voices[1].id)
def speak(audio):
engine.say(audio)
engine.runAndWait()
text = str(input("Paste article\n"))
res = requests.get(text)
articles = []
for i in range(len(soup.select('.p'))):
article = soup.select('.p')[i].getText().strip()
articles.append(article)
text = " ".join(articles)
speak(text)
# engine.save_to_file(text, 'test.mp3') ## If you want to save the speech as a audio file
engine.runAndWait()
2.自动化数据探索
数据探索是数据科学项目的第一步,你需要了解数据的基本信息才能进一步分析更深的价值。
一般我们会用pandas、matplotlib等工具来探索数据
但需要自己编写大量代码,如果想提高效率,Dtale是个不错的选择。
Dtale特点是用一行代码生成自动化分析报告,它结合了Flask后端和React前端
为我们提供了一种查看和分析Pandas数据结构的简便方法。
我们可以在Jupyter上实用Dtale。
需要的第三方库:
- Dtale
自动生成分析报告
具体代码如下
### Importing Seaborn Library For Some Datasets
import seaborn as sns
### Printing Inbuilt Datasets of Seaborn Library
print(sns.get_dataset_names())
### Loading Titanic Dataset
df=sns.load_dataset('titanic')
### Importing The Library</