SIR传染病模型介绍+R语言简单应用

SIR模型由Kermack和McKendrick于1927年提出,用于描述传染病传播。模型分为易感者(S),感染者(I)和康复者(R)三类。SIR模型通过常微分方程表示传播率(β)和康复率(γ)。R0是基本感染数,当R0>1时,疾病可能爆发。模型变体包括SI、SIS、SIRS和SEIR等。确定性模型和随机性模型各有特点,随机模型能更好地模拟复杂情况。本文将展示R语言在SIR模型应用中的实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

此文用于整理回顾写论文时看的文献资料和学到的知识,也希望能带来一些参考。

什么是SIR模型?

1927年,Kermack 和 McKendrick 为了研究17世纪肆虐伦敦的黑死病和20世纪席卷孟买的鼠疫而发展出的仓室模型(compartmental model)就是现在被广泛应用的SIR模型。其中S代表Susceptible 易感者,I 代表 Infectious 感染者,R代表Recovered/Removed 康复者/移除者。之间的关系可用下图描述,SIR的模型建立在人口不变即无出生无死亡无移民的情况下,并且人口均匀混合在一起(homogeneous mixing。假设总人口为 N N N,那么 N = S + I + R N=S+I+R N=S+I+R.
在这里插入图片描述
这三种状态可用常微分方程表示为
d S d t = − β S I \frac{dS}{dt}= - \beta S I dtdS=βSI
d I d t = β S I − γ

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值