1 面试官的部门介绍
我们部门是信贷系统平台部,主要是为度小满做一个服务,你应该也接触过信用卡,跟这种差不多,用户可以打进我们的系统申请一个额度,整个部门的规模大概是400-500人左右,我个人来自平台数据团队,主要是收敛整个信贷部门的数据,然后供给其他部门使用,比如风控团队,风控主要做的是用于判断一个人的贷款资质和额度的系统,平台部的技术团队大概40-50人,我们这儿的技术栈主要是spring,springMVC,像spring cloud也有在用,但是自研的也有,我们跟数据打交道比较多,然后还会用一些hadoop,hive等技术栈和能力,除了java,还有go,php,但是可能是其他部门;此外,即使三面都通过的话,也不一定是在我们部门,到时候可能会再做一个挑选
2 场景设计
2.1 如果你接到一个需求,这个需求涉及到访问其他的api,你能从不同的角度,安全性,可用性、高性能角度,说明一下这个接口应该具备哪些能力嘛
答:
当然可以。如果你接到一个需求,需要设计一个接口来访问其他的API,从安全性、可用性和高性能的角度,该接口应具备以下能力:
1. 安全性:
-
鉴权 (Authentication): 确保只有合法的用户或应用程序可以访问你的接口。常用的方法包括API密钥、OAuth、JWT等。
-
授权 (Authorization): 确保已经鉴权的用户或应用只能访问它们被允许的资源和操作。
-
数据加密: 使用HTTPS进行传输,确保数据在传输过程中不被截取或篡改。如果需要,还可以使用端到端加密。
-
错误处理: 避免显示敏感信息,例如数据库错误或调试信息。
-
防御性编程: 对输入进行验证和清理,以避免SQL注入、跨站脚本(XSS)等常见的安全威胁。
-
频率限制: 限制API的调用频率,防止恶意用户进行洪水攻击或过多请求。
2. 可用性:
-
冗余: 如果可能,确保有备份或多个服务器实例来处理请求,以避免单点故障。
-
负载均衡: 使用负载均衡器,确保所有的服务器实例都有均匀的流量,并在某个实例故障时自动切换。
-
健康检查: 定期检查API的健康状况,确保其正常运行。
-
优雅的降级: 当外部服务或资源不可用时,提供有意义的错误信息或回退到备用的服务。
-
文档: 提供详细且易于理解的API文档,方便其他开发者使用。
-
使用限流算法:调用别人的时候,比如运营商接口,可以在运营商一方使用漏桶算法,如果想要应对突发流量,同时保护自己,使用令牌桶算法或者滑动窗口计数器
-
**监控:**监控的时候发现负载过高,添加新节点,
3. 高性能:
-
缓存: 使用缓存技术(如Redis、Memcached等)来缓存经常被查询的数据或结果,减少数据库或外部API的查询。
-
异步处理: 对于需要长时间处理的请求,考虑使用异步处理,然后再通知用户结果。
-
优化数据库查询: 确保数据库查询已经优化,避免N+1问题,使用索引等。
-
并发处理: 使用并发编程模型,确保API可以同时处理多个请求。
-
压缩: 使用gzip或其他技术压缩API响应,减少数据传输的大小和时间。
-
连接持久化: 使用持久化连接如HTTP/2,以减少建立和关闭连接的开销。
-
监控性能: 使用监控工具来跟踪API的性能,如响应时间、错误率等,以便进行及时的优化。
这只是对这个话题的一个初步概述,每个点都可以深入探讨,取决于具体的应用场景和需求。
2.2 还有没有其他需要考虑的点
当然,除了上述提到的关于安全性、可用性和高性能的建议之外,还有其他一些重要的考虑因素。以下是对一个API应具备的其他能力的扩展:
4. 扩展性:
- 模块化设计: 设计API时,应考虑到将来可能的变更和扩展,模块化的设计可以确保在不影响现有功能的情况下添加新功能。
- 版本管理: 随着业务需求的发展,API可能需要进行更改。通过合理的版本管理策略,可以确保向后兼容,同时支持新的功能。
5. 透明度与监控:
- 日志记录: 记录API的使用情况,包括访问者、时间、响应时间、返回的数据和任何可能的错误。
- 告警系统: 在出现异常或错误时,系统应能自动发送警报,以便及时处理。
- 可视化监控: 使用工具如Grafana、Kibana等,以图形化的方式显示API的性能和使用情况。
6. 用户友好性:
- 清晰的错误信息: 当用户发送的请求有问题时,返回的错误信息应该足够清晰,使用户能够理解问题并采取相应的措施。
- 支持多种格式: 考虑支持不同的数据格式,如JSON, XML等,以满足不同用户的需求。
7. 兼容性:
- 跨平台: 保证API可以在不同的操作系统和设备上使用。
- 跨语言: API应设计成语言无关的,以便各种编程语言都可以方便地调用。
8. 业务相关:
- 限流与计费: 如果API是一个付费服务,需要有一个机制来跟踪用户的使用情况,并根据使用量进行计费。
- 数据备份与恢复: 确保有备份策略,并且可以在数据丢失或损坏时恢复。
9. 测试:
- 自动化测试: 建立自动化测试,确保API的每次更改都不会引入新的错误。
- 压力测试: 测试API在高流量下的表现,确保其在实际生产环境中的稳定性。
以上只是对API设计和实施时应考虑的方面的一个总览。具体的需求和实践可能会有所不同,但这为你提供了一个良好的起点。
2.3 你的秒杀系统是怎么做测试的
答:使用jmeter,开启1w个线程模拟10000个用户,然后测试三轮,取得的平均值
2.4 你的系统在云服务器部署过是嘛
答:没,单机部署
2.5 一个接口A会调用接口B和C,B返回的时间是100ms,C返回的时间不固定,可能是200ms,也可能是800ms,现在要求A接口在500ms内收到B和C中任意一个接口返回结果,A就返回结果给用户。如何实现
2.5.1 方法一:使用CompletableFuture发送两个异步调用请求,然后再使用CompletableFuture的静态方法编排两个异步请求的返回结果,其中可以加一个500ms的时间戳,如果500ms内有任意一个请求返回则返回,都没有返回就抛异常
import java.util.concurrent.*;
public class InterfaceCaller {
private static final Executor executor = Executors.newFixedThreadPool(2);
public static String callInterfaceB() {
// Simulate calling Interface B
// ... your implementation here ...
return "Response from B";
}
public static String callInterfaceC() {
// Simulate calling Interface C
// ... your implementation here ...
return "Response from C";
}
public static void main(String[] args) {
CompletableFuture<String> futureB = CompletableFuture.supplyAsync(() -> callInterfaceB(), executor);
CompletableFuture<String> futureC = CompletableFuture.supplyAsync(() -> callInterfaceC(), executor);
try {
String result = CompletableFuture.anyOf(futureB, futureC).get(500, TimeUnit.MILLISECONDS);
System.out.println(result);
} catch (TimeoutException e) {
System.out.println("Timeout exceeded!");
} catch (Exception e) {
e.printStackTrace();
}
}
}
2.5.2 方法二: 以Apache Kafka为例,详细描述下发消息、消费消息再到返回消息的完整过程:
1. 消息下发:
-
生产者创建:接口A作为消息的生产者,首先需要创建一个Kafka生产者实例。
-
主题选择:接口A选择或创建一个主题(例如
request-topic
)来发布其请求消息。 -
发布消息:接口A生成一个唯一的请求ID并发布消息到
request-topic
。这个消息除了包含业务数据外,还应该有其他元数据,如请求ID、时间戳等。
2. 消息消费:
-
消费者创建:接口B和C作为消息的消费者,它们分别创建Kafka消费者实例并订阅
request-topic
。 -
消息读取:接口B和C监听
request-topic
,当接口A的请求消息到达时,它们会从主题中拉取消息。 -
业务逻辑处理:接口B或C读取消息内容,并开始进行必要的业务逻辑处理。
3. 消息返回:
-
选择返回的主题:完成处理后,接口B或C选择一个返回主题(例如
response-topic-interfaceB
或response-topic-interfaceC
)来发布其响应消息。 -
发布响应消息:接口B或C生成响应消息,确保在其中包含原始请求的ID和处理结果,然后发布到相应的返回主题。
-
接口A消费返回消息:接口A此时转变为消费者的角色,它订阅并监听
response-topic-interfaceB
和response-topic-interfaceC
等待响应。为了确保在500ms内获得响应,接口A设置一个定时器。 -
超时与响应处理:如果接口A在500ms内收到了来自接口B或C的响应,它会中止其定时器并处理返回的消息。如果超时,接口A可以返回一个错误消息或默认响应。
整个过程涉及了消息的生产、消费、业务处理和响应,是一个典型的发布-订阅模型。使用Apache Kafka,你可以利用其高吞吐量、持久性和分布式特性来实现这一过程。但同样要注意,引入消息队列会带来一定的延迟,尤其是在高并发的场景中,因此在设计时应权衡实时性和可靠性。
2.5.3 使用Kafka和使用CompletableFuture
实现异步操作各有优劣。下面是两者的比较:
使用Kafka
优点:
- 解耦:生产者和消费者之间解耦,它们可以独立地进行扩展、部署和维护。
- 持久性:Kafka提供了消息持久性,即使消费者或生产者崩溃,消息仍然存在并可以被重新消费。
- 可靠性:Kafka设计用于处理大量消息流,具有高可靠性和容错能力。
- 可扩展性:Kafka集群可以水平扩展,以满足更高的吞吐量需求。
- 后处理能力:由于消息被存储,你可以稍后进行消费,这对于日志处理、分析等后处理任务很有用。
缺点:
- 延迟:Kafka的消息传递可能不如直接调用快,尤其是在高并发的情况下。
- 复杂性:引入Kafka会增加系统的复杂性,需要管理和维护Kafka集群。
- 资源开销:Kafka需要额外的资源如存储、CPU和内存。
使用CompletableFuture
优点:
- 简单性:使用
CompletableFuture
实现并发操作通常比设置和维护Kafka更简单。 - 速度:
CompletableFuture
为内存中的操作提供了近乎实时的响应速度。 - 直接性:直接使用Java API,无需额外的中间件或依赖。
- 灵活性:
CompletableFuture
提供了丰富的API,如组合、链式操作等,使得编写复杂的异步逻辑更为方便。
缺点:
- 局限性:
CompletableFuture
主要用于单个JVM中的并发操作,不适用于分布式系统或跨服务的通信。 - 非持久性:如果应用崩溃,
CompletableFuture
中的操作可能会丢失。 - 资源限制:所有并发操作共享同一个JVM的资源,如果任务太多,可能会导致资源耗尽。
总结:
- 对于在单个应用或服务内需要快速并发处理的场景,
CompletableFuture
是一个很好的选择。 - 对于需要跨应用、跨服务或分布式环境中的消息传递、解耦和持久性的场景,Kafka或其他消息队列是更合适的选择。
选择哪种方法取决于你的具体需求、资源和项目的复杂性。
3 rpc框架
3.1 你的rpc框架使用http做通信和使用rpc做通信有什么区别吗
答:
首先,我们应当明确一点:RPC(Remote Procedure Call)是一种远程过程调用模式,而HTTP(HyperText Transfer Protocol)是一种应用层协议。RPC不是一个具体的通信协议;实际上,RPC可以使用多种协议来实现,其中HTTP只是其中之一。因此,RPC和HTTP并不是直接相对的概念。
但在许多上下文中,当人们提到"使用RPC做通信"时,他们实际上是指使用某种专门为RPC设计的协议(例如gRPC、Thrift、RMI等),而不是通用的HTTP协议。基于这一点,我们可以讨论使用专为RPC设计的协议与使用HTTP协议进行RPC的区别:
-
效率与性能:
- 专为RPC设计的协议(如gRPC):通常使用了诸如Protocol Buffers这样的二进制格式,这比传统的HTTP+JSON/XML组合更为高效,因为它减少了序列化/反序列化的开销。
- HTTP:通常使用文本格式(如JSON或XML),这可能比二进制格式慢。
-
通信模式:
- 专为RPC设计的协议:支持多种通信模式,包括请求/响应、双向流、服务器推送等。
- HTTP/1.1:主要是请求/响应模式。尽管可以使用技术如长轮询来模拟服务器推送,但这不是最佳的方法。
- HTTP/2:支持多种模式,如双向流和服务器推送,因此与专为RPC设计的协议更为相似。
-
开发友好度:
- 专为RPC设计的协议:通常需要更多的开发工具和库,如IDL(接口定义语言)工具,用于生成客户端和服务器代码。
- HTTP:更为普遍且通用,开发者可能已经熟悉它。但为HTTP创建RPC风格的API可能需要更多的手工编码。
-
互操作性和生态系统:
- 专为RPC设计的协议:可能需要特定的库和工具,这可能限制了其与其他系统的互操作性。
- HTTP:由于其普遍性,它具有广泛的互操作性和强大的生态系统。
-
安全性:
- 两者都支持加密和认证机制,但具体的实现和工具可能会有所不同。
-
传输协议:
- 专为RPC设计的协议:虽然许多都是基于TCP的,但它们可能会使用特定的传输协议,如gRPC使用HTTP/2。
- HTTP:可以运行在多种传输协议上,但通常是TCP。
总的来说,选择使用专为RPC设计的协议还是HTTP进行RPC主要取决于应用的具体需求,例如性能、开发经验、互操作性等因素。
3.2 说一下你这个自定义协议的结构
答:
3.3 你用的是哪种序列化协议,为什么不考虑kryo,json这种序列化协议呢
答:我和json做了一下对比
我基于OpenAI的设计决策,并不直接决定使用哪种序列化协议。但我可以为你解释为什么在某些应用中,人们可能选择Protocol Buffers而不是Kryo、JSON等其他序列化格式。
-
性能和效率:
- Protocol Buffers (ProtoBuf): 是一个二进制格式,非常高效,尤其在序列化和反序列化时。由于其紧凑的特性,ProtoBuf在网络传输和存储时也十分高效。
- Kryo: 是一个高效的Java序列化库,也是二进制的,通常比Java的默认序列化更快。但Kryo主要针对Java,而ProtoBuf是跨平台和跨语言的。
- JSON: 是文本格式,通常比二进制格式大并且序列化/反序列化速度相对较慢。但其可读性好并且被广泛支持,非常适合Web API和配置。
-
跨语言支持:
- ProtoBuf: 支持多种语言,如Java、C++、Python、Go等。这使得在不同的系统和语言之间进行通信变得简单。
- Kryo: 主要为Java设计。如果你的系统完全基于Java,Kryo可能是一个很好的选择,但它不如ProtoBuf那么灵活。
- JSON: 几乎所有编程语言都支持,非常通用。
-
模式的演进:
- ProtoBuf: 允许你在不破坏向后兼容性的情况下修改数据结构。这在分布式系统中,特别是在需要进行持续部署的环境中,是非常有价值的。
- Kryo & JSON: 对模式的变更可能不那么友好,尤其是在大型、快速变化的系统中。
-
可读性与调试:
- ProtoBuf: 由于是二进制格式,不如文本格式易于阅读和调试。
- Kryo: 也是二进制格式,具有与ProtoBuf相同的限制。
- JSON: 易于阅读和调试,因为它是文本格式。
-
生态系统和工具支持:
- ProtoBuf: 有一个成熟的生态系统,包括代码生成、文档工具等。
- Kryo: 为Java生态系统提供了良好的支持,但不像ProtoBuf那样广泛。
- JSON: 有大量的库和工具可供选择。
总之,选择哪种序列化协议取决于具体的需求。ProtoBuf在许多高性能、大规模和跨语言的应用中是首选,但在特定的上下文中,Kryo或JSON可能更为合适。
4 tomcat
4.1 tomcat和netty的区别
答:
Tomcat:
- 类型: Tomcat是一个Java Servlet容器和Web服务器。它能够执行Java Servlet和呈现JSP页面。
- 使用: 主要用于部署和运行Java EE应用。
- 性能: 尽管Tomcat进行了优化,但它可能不如专门设计的非阻塞框架如Netty那样高性能。
- 模型: Tomcat使用多线程模型来处理并发请求,通常为每个请求创建一个线程。
Netty:
- 类型: Netty是一个高性能、异步的、基于事件驱动的网络应用框架。它支持多种协议。
- 使用: 主要用于开发高性能、高可靠性的网络应用,如RPC框架。
- 性能: Netty是为高并发、高性能设计的,使用了非阻塞I/O。
- 模型: Netty使用事件驱动模型,可以轻松处理成千上万的并发连接。
4.2 tomcat打破双亲委派模型的目的是什么
答:
双亲委派模型的主要目的是为了保证Java核心库的类型安全性。但是,在Web容器环境中,如果遵循传统的双亲委派模型,可能会遇到一些问题。例如,如果两个Web应用部署在同一个容器中并且它们使用了不同版本的同一个库,传统的委派模型可能会导致其中一个应用获取到错误的库版本。为了解决这个问题并为Web应用提供更大的灵活性,Tomcat选择打破了传统的双亲委派模型。
4.3 tomcat如何打破双亲委派的
Tomcat引入了一个叫做Web Application Classloader的特殊类加载器。按照传统的双亲委派模型,类加载器首先会委托给其父加载器来加载类;只有当父加载器无法加载该类时,类加载器才尝试自己加载该类。
但在Tomcat中,Web Application Classloader会首先尝试加载Web应用下的类,如果没有找到,它才会委派给其父加载器。这样,Web应用就可以自由地使用自己的库版本,而不受共享库的影响。
这种做法确实打破了传统的双亲委派模型,但它为Web应用提供了更大的灵活性,并解决了多个应用在同一个容器中共存时可能遇到的库冲突问题。
5 故障排查
5.1 如何完成故障排查的,举个例子
答:
5.2 有没有使用arthas排查出性能问题,然后做出优化
答:
5.3 如果你负责的项目,经常发生ygc,是什么原因
答:
我的答案:
(1)内存泄露,资源没有回收
(2)应用不断new出新的对象
(3)minorGC时的并发线程数设置的过低,回收速度赶不上
gpt4答案:
经常发生Young GC(YGC)可能是由多种原因导致的。以下是一些常见的原因及其描述:
-
短生命周期的对象产生过多:
- 如果应用创建了大量的短生命周期的对象(即对象很快被创建然后变得不可达),这些对象会迅速填满年轻代(Young Generation)并触发YGC。
-
年轻代空间设置不当:
- 如果年轻代的大小设置得太小,YGC可能会频繁发生。你可以考虑调整年轻代的大小来适应应用的需求。
-
代码存在不良的数据结构或算法:
- 例如,使用了产生大量临时对象的循环或算法。
-
外部因素:
- 如频繁的文件I/O操作、数据库查询等,可能间接导致大量的临时对象创建。
-
使用了不适合的框架或库:
- 某些框架或库可能在内部创建了大量的临时对象。
-
频繁的字符串操作:
- 如大量的字符串拼接操作可能会产生大量的临时字符串对象。
-
频繁使用了缓存:
- 如果缓存策略或大小设置不当,可能会导致大量的对象进入年轻代。
-
应用负载突然增大:
- 如应用突然接收到大量请求,可能会短时间内产生大量的临时对象。
要诊断和解决频繁的YGC,你可以采取以下措施:
-
使用JVM监控工具,如
jstat
、VisualVM或Java Mission Control,来查看GC的频率、持续时间和内存使用情况。 -
使用Java的堆分析工具,如HeapDump或jmap,来查看哪些对象占用了最多的年轻代空间。
-
根据上述工具的输出,调整年轻代大小或优化代码来减少短生命周期的对象的产生。
-
在优化后,持续监控以确保问题得到了解决。
5.4 YGC的根引在哪儿
答:方法区,栈帧中的局部变量表中,也存在引用,同时还有常量池
5.5 针对不断new出的对象,如何解决
答:单例
针对不断被new
出来的对象,以下是一些解决方案和建议:
-
对象池化:
- 对于经常创建和短时间内就被销毁的对象,你可以使用对象池。例如,Apache Commons Pool 提供了一种通用的对象池化解决方案。通过重用对象,你可以减少需要频繁创建和销毁的对象的数量,从而减少GC的压力。
-
减少临时对象的创建:
- 优化代码,避免创建不必要的临时对象。例如,对于字符串操作,可以考虑使用
StringBuilder
或StringBuffer
来减少临时字符串的创建。
- 优化代码,避免创建不必要的临时对象。例如,对于字符串操作,可以考虑使用
-
优化数据结构和算法:
- 审查代码中使用的数据结构和算法,确保它们不会产生大量的临时对象。
-
缓存:
- 对于经常被创建但状态不经常改变的对象,可以考虑使用缓存来存储这些对象,而不是每次都重新创建。
-
延迟对象的创建:
- 只有在真正需要对象时才创建它,而不是预先创建。
-
调整JVM参数:
- 调整Young Generation的大小,这可能会影响YGC的频率和持续时间。
-
使用单例:单例能够节约空间,避免对象的重复创建