挑战练习题2.3动态规划 poj3046 Ant Counting dp

题目链接:

http://poj.org/problem?id=3046

题意:

有T种蚂蚁,共A只。同一个种的蚂蚁长得一样,但是不同种的蚂蚁牙齿颜色不同。任取n只蚂蚁(S<=n<=B),求能组成几种集合?

题解:

dp[i][j] := 使用前i个种可以配出来j个的集合的个数。
那么dp[0][0] = 1,不使用任何蚂蚁配出空集的个数为1。

挑战P69页的优化(O(n^2))真TM不懂

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll;
#define MS(a) memset(a,0,sizeof(a))
#define MP make_pair
#define PB push_back
const int INF = 0x3f3f3f3f;
const ll INFLL = 0x3f3f3f3f3f3f3f3fLL;
inline ll read(){
    ll x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
//////////////////////////////////////////////////////////////////////////
const int maxn = 1e5+10;
const int mod = 1e6;

int dp[1000][maxn];
int a[maxn];

int main(){
    int T,A,S,B;
    cin >> T >> A >> S >> B;
    for(int i=1; i<=A; i++){
        int x; cin >> x;
        ++a[x];
    }

    // dp[i][j] = dp[i-1][j]+dp[i][j-k]; 使用前i个家族可以配出来“元素个数为j”的集合的个数

    dp[0][0] = 1;
    int tot = 0;
    for(int i=1; i<=T; i++){
        tot += a[i];
        for(int j=0; j<=tot; j++){
            for(int k=0; k<=a[i] && j>=k; k++){
                dp[i][j] = (dp[i][j]+dp[i-1][j-k])%mod;
            }
        }
    }

    ll ans = 0;
    for(int i=S; i<=B; i++)
        ans = (ans + dp[T][i])%mod;

    cout << ans << endl;

    return 0;
}

滚动优化

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll;
#define MS(a) memset(a,0,sizeof(a))
#define MP make_pair
#define PB push_back
const int INF = 0x3f3f3f3f;
const ll INFLL = 0x3f3f3f3f3f3f3f3fLL;
inline ll read(){
    ll x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
//////////////////////////////////////////////////////////////////////////
const int maxn = 1e5+10;
const int mod = 1e6;

int dp[2][maxn];
int a[maxn];

int main(){
    int T,A,S,B;
    cin >> T >> A >> S >> B;
    for(int i=1; i<=A; i++){
        int x; cin >> x;
        ++a[x];
    }

    // dp[i][j] = dp[i-1][j]+dp[i][j-k]; 使用前i个家族可以配出来“元素个数为j”的集合的个数

    int now=0,pre=1;
    dp[now][0] = 1;
    int tot = 0;
    for(int i=1; i<=T; i++){
        tot += a[i];
        swap(now,pre);
        MS(dp[now]);
        for(int j=0; j<=tot; j++){
            for(int k=0; k<=a[i] && j>=k; k++){
                dp[now][j] = (dp[now][j]+dp[pre][j-k])%mod;
            }
        }
    }

    ll ans = 0;
    for(int i=S; i<=B; i++)
        ans = (ans + dp[now][i])%mod;

    cout << ans << endl;

    return 0;
}

蜜汁优化: 我写了啥?

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll;
#define MS(a) memset(a,0,sizeof(a))
#define MP make_pair
#define PB push_back
const int INF = 0x3f3f3f3f;
const ll INFLL = 0x3f3f3f3f3f3f3f3fLL;
inline ll read(){
    ll x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
//////////////////////////////////////////////////////////////////////////
const int maxn = 1e5+10;
const int mod = 1e6;

int dp[1005][maxn];
int a[maxn];

int main(){
    int T,A,S,B;
    cin >> T >> A >> S >> B;
    for(int i=1; i<=A; i++){
        int x; cin >> x;
        ++a[x];
    }

    for(int i=0; i<=T; i++)
        dp[i][0] = 1;

    for(int i=1; i<=T; i++){
        for(int j=1; j<=A; j++){
            if(j-1-a[i] >= 0)
                dp[i][j] = (dp[i][j-1]+dp[i-1][j]-dp[i-1][j-1-a[i]] + mod) % mod;
            else
                dp[i][j] = (dp[i][j-1]+dp[i-1][j]) % mod;
        }
    }

    ll ans = 0;
    for(int i=S; i<=B; i++)
        ans = (ans + dp[T][i]) % mod;
    cout << ans << endl;

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值