题目链接:
http://poj.org/problem?id=3046
题意:
有T种蚂蚁,共A只。同一个种的蚂蚁长得一样,但是不同种的蚂蚁牙齿颜色不同。任取n只蚂蚁(S<=n<=B),求能组成几种集合?
题解:
dp[i][j] := 使用前i个种可以配出来j个的集合的个数。
那么dp[0][0] = 1,不使用任何蚂蚁配出空集的个数为1。
挑战P69页的优化(O(n^2))真TM不懂
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll;
#define MS(a) memset(a,0,sizeof(a))
#define MP make_pair
#define PB push_back
const int INF = 0x3f3f3f3f;
const ll INFLL = 0x3f3f3f3f3f3f3f3fLL;
inline ll read(){
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
//////////////////////////////////////////////////////////////////////////
const int maxn = 1e5+10;
const int mod = 1e6;
int dp[1000][maxn];
int a[maxn];
int main(){
int T,A,S,B;
cin >> T >> A >> S >> B;
for(int i=1; i<=A; i++){
int x; cin >> x;
++a[x];
}
// dp[i][j] = dp[i-1][j]+dp[i][j-k]; 使用前i个家族可以配出来“元素个数为j”的集合的个数
dp[0][0] = 1;
int tot = 0;
for(int i=1; i<=T; i++){
tot += a[i];
for(int j=0; j<=tot; j++){
for(int k=0; k<=a[i] && j>=k; k++){
dp[i][j] = (dp[i][j]+dp[i-1][j-k])%mod;
}
}
}
ll ans = 0;
for(int i=S; i<=B; i++)
ans = (ans + dp[T][i])%mod;
cout << ans << endl;
return 0;
}
滚动优化
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll;
#define MS(a) memset(a,0,sizeof(a))
#define MP make_pair
#define PB push_back
const int INF = 0x3f3f3f3f;
const ll INFLL = 0x3f3f3f3f3f3f3f3fLL;
inline ll read(){
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
//////////////////////////////////////////////////////////////////////////
const int maxn = 1e5+10;
const int mod = 1e6;
int dp[2][maxn];
int a[maxn];
int main(){
int T,A,S,B;
cin >> T >> A >> S >> B;
for(int i=1; i<=A; i++){
int x; cin >> x;
++a[x];
}
// dp[i][j] = dp[i-1][j]+dp[i][j-k]; 使用前i个家族可以配出来“元素个数为j”的集合的个数
int now=0,pre=1;
dp[now][0] = 1;
int tot = 0;
for(int i=1; i<=T; i++){
tot += a[i];
swap(now,pre);
MS(dp[now]);
for(int j=0; j<=tot; j++){
for(int k=0; k<=a[i] && j>=k; k++){
dp[now][j] = (dp[now][j]+dp[pre][j-k])%mod;
}
}
}
ll ans = 0;
for(int i=S; i<=B; i++)
ans = (ans + dp[now][i])%mod;
cout << ans << endl;
return 0;
}
蜜汁优化: 我写了啥?
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll;
#define MS(a) memset(a,0,sizeof(a))
#define MP make_pair
#define PB push_back
const int INF = 0x3f3f3f3f;
const ll INFLL = 0x3f3f3f3f3f3f3f3fLL;
inline ll read(){
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
//////////////////////////////////////////////////////////////////////////
const int maxn = 1e5+10;
const int mod = 1e6;
int dp[1005][maxn];
int a[maxn];
int main(){
int T,A,S,B;
cin >> T >> A >> S >> B;
for(int i=1; i<=A; i++){
int x; cin >> x;
++a[x];
}
for(int i=0; i<=T; i++)
dp[i][0] = 1;
for(int i=1; i<=T; i++){
for(int j=1; j<=A; j++){
if(j-1-a[i] >= 0)
dp[i][j] = (dp[i][j-1]+dp[i-1][j]-dp[i-1][j-1-a[i]] + mod) % mod;
else
dp[i][j] = (dp[i][j-1]+dp[i-1][j]) % mod;
}
}
ll ans = 0;
for(int i=S; i<=B; i++)
ans = (ans + dp[T][i]) % mod;
cout << ans << endl;
return 0;
}