一、实验目的及要求
1.理解二叉树的基本概念和特点
2.掌握二叉树的链式存储结构
3.掌握二叉树的基本操作
4.掌握二叉树遍历操作
二、实验内容(或实验原理、实验拓扑)
1.实现二叉树的如下操作,先序遍历、中序遍历和后序遍历的递归算法,二叉树如下图所示。(采用二叉链存储结构实现)
(1)采用括号表示法,构建如下二叉树,并输出二叉树b;
(2)采用递归算法,输出二叉树的先序序列;(参考课本212页代码)
(3)采用递归算法,输出二叉树的中序序列;
(4)采用递归算法,输出二叉树的后序序列;
2.实现上述二叉树的先序遍历的算法。
三、实验设计方案(包括实验步骤、设计思想、算法描述或开发流程等)
(一)先、中、后序遍历递归思路与写法:
1. 先、中、后序遍历递归思路
先序遍历:先遍历根节点,再遍历左子树,再遍历右子树,所以最先输出根节点;
中序遍历:先遍历根节点左子树,再遍历根节点,再遍历右子树;
后序遍历:先遍历左子树,再右子树,最后根节点。
2.递归算法的基本操作函数以及主函数(详细代码见附录):
(1) 创建二叉树CreateBTNode(*b,*str):根据二叉树括号表示法字符串str生成对
应的二叉链存储结构,后者的根结点为*b。
(2) 输出二叉树DispBTNode(BTNode *b):以括号表示法输出一棵二叉树。
(3) 销毁二叉树DestroyBTNode(BTNode *&b):销毁二叉树b。
(4) 先序遍历递归算法PreOrder(BTNode * b)
(5) 中序遍历递归算法InOrder(BTNode * b)
(6) 后序遍历递归算法PostOrder(BTNode * b)
(7)主函数main():根据问题依次调用基本操作函数并编写通俗易懂的语句输出。
(二) 先序遍历非递归方法的基本思路与算法:
1. 先序遍历非递归方法的基本思路:
利用栈先输出当前节点(根),然后将所以其左节点压到栈中,方便后面出栈来处理其的右节点,然后把当前的对象指针指到其左节点(左),然后 while 判断指针不为空,所以继续将其输出,然后移到其左节点,直到没有左节点了,通过出栈开始处理右节点(右)。
2.非递归算法的基本操作函数以及主函数(详细代码见附录):
(1) 创建二叉树CreateBTNode(*b,*str):根据二叉树括号表示法字符串str生成对
应的二叉链存储结构,后者的根结点为*b。
(2) 输出二叉树DispBTNode(BTNode *b):以括号表示法输出一棵二叉树。
(3) 销毁二叉树DestroyBTNode(BTNode *&b):销毁二叉树b。
(4) 初始化栈InitStack(SqStack *&s)
(5) 销毁栈DestroyStack(SqStack *&s)
(6) 判断栈是否为空StackEmpty(SqStack *s)
(7) 进栈Push(SqStack *&s,BTNode *e)
(8) 出栈Pop(SqStack *&s,BTNode *&e)
(9) 取栈顶元素GetTop(SqStack *s,BTNode *&e)
(10) 先序遍历非递归算法PreOrder2(BTNode *b)
(11)主函数main():根据问题依次调用基本操作函数并编写通俗易懂的语句输出。
四、实验结果(包括设计效果、测试数据、运行结果等)
(一)递归算法的运行结果如下:
(二)非递归算法的运行结果如下:
五、实验小结(包括收获、心得体会、注意事项、存在问题及解决办法、建议等)
二叉树的遍历是指按照一定次序访问树中所有节点,并且每个节点仅被访问一次的过程。遍历操作实际上是将非线性结构线性化的过程,其结果为线性序列,并根据采用的遍历顺序分别称为先序序列、中序序列、后序序列。
六、附录(包括作品、流程图、源程序及命令清单等)
(一)递归算法:
#include <stdio.h>
#include <malloc.h>
#define MaxSize 100
typedef char ElemType;
typedef struct node
{
ElemType data; //数据元素
struct node *lchild; //指向左孩子
struct node *rchild; //指向右孩子
} BTNode;
void CreateBTNode(BTNode *&b,char *str) //由str串创建二叉链
{
BTNode *St[MaxSize],*p=NULL;
int top=-1,k,j=0;
char ch;
b=NULL; //建立的二叉树初始时为空
ch=str[j];
while (ch!='\0') //str未扫描完时循环
{
switch(ch)
{
case '(':top++;St[top]=p;k=1; break; //为左节点
case ')':top--;break;
case ',':k=2; break; //为右节点
default:p=(BTNode *)malloc(sizeof(BTNode));
p->data=ch;p->lchild=p->rchild=NULL;
if (b==NULL) //p指向二叉树的根节点
b=p;
else //已建立二叉树根节点
{
switch(k)
{
case 1:St[top]->lchild=p;break;
case 2:St[top]->rchild=p;break;
}
}
}
j++;
ch=str[j];
}
}
void DispBTNode(BTNode *b) //以括号表示法输出二叉树
{
if (b!=NULL)
{
printf("%c",b->data);
if (b->lchild!=NULL || b->rchild!=NULL)
{
printf("(");
DispBTNode(b->lchild);
if (b->rchild!=NULL) printf(",");
DispBTNode(b->rchild);
printf(")");
}
}
}
void DestroyBTNode(BTNode *&b) //销毁二叉树
{
if (b!=NULL)
{
DestroyBTNode(b->lchild);
DestroyBTNode(b->rchild);
free(b);
}
}
void PreOrder(BTNode * b) //先序遍历递归算法
{
if(b!=NULL)
{
printf(" %c",b->data); //访问根结点
PreOrder(b->lchild); //先序遍历左子树
PreOrder(b->rchild); //先序遍历右子树
}
}
void InOrder(BTNode * b) //中序遍历递归算法
{
if(b!=NULL)
{
InOrder(b->lchild); //中序遍历左子树
printf(" %c",b->data); //访问根结点
InOrder(b->rchild); //中序遍历右子树
}
}
void PostOrder(BTNode * b) //后序遍历递归算法
{
if(b!=NULL)
{
PostOrder(b->lchild); //后序遍历左子树
PostOrder(b->rchild); //后序遍历右子树
printf(" %c",b->data); //访问根结点
}
}
int main()
{
BTNode *b;
CreateBTNode(b,"A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))");
printf("二叉树b: ");
DispBTNode(b);
printf("\n");
printf("先序遍历序列:");
printf("\n");
printf("\t递归算法:");
PreOrder(b);
printf("\n");
printf("中序遍历序列:");
printf("\n");
printf("\t递归算法:");
InOrder(b);
printf("\n");
printf("后序遍历序列:");
printf("\n");
printf("\t递归算法:");
PostOrder(b);
printf("\n");
return 0;
}
(二)非递归算法:
btree.cpp
#include <stdio.h>
#include <malloc.h>
#define MaxSize 100
typedef char ElemType;
typedef struct node
{
ElemType data; //数据元素
struct node *lchild; //指向左孩子
struct node *rchild; //指向右孩子
} BTNode;
void CreateBTNode(BTNode *&b,char *str) //由str串创建二叉链
{
BTNode *St[MaxSize],*p=NULL;
int top=-1,k,j=0;
char ch;
b=NULL; //建立的二叉树初始时为空
ch=str[j];
while (ch!='\0') //str未扫描完时循环
{
switch(ch)
{
case '(':top++;St[top]=p;k=1; break; //为左节点
case ')':top--;break;
case ',':k=2; break; //为右节点
default:p=(BTNode *)malloc(sizeof(BTNode));
p->data=ch;p->lchild=p->rchild=NULL;
if (b==NULL) //p指向二叉树的根节点
b=p;
else //已建立二叉树根节点
{
switch(k)
{
case 1:St[top]->lchild=p;break;
case 2:St[top]->rchild=p;break;
}
}
}
j++;
ch=str[j];
}
}
void DispBTNode(BTNode *b) //以括号表示法输出二叉树
{
if (b!=NULL)
{
printf("%c",b->data);
if (b->lchild!=NULL || b->rchild!=NULL)
{
printf("(");
DispBTNode(b->lchild);
if (b->rchild!=NULL) printf(",");
DispBTNode(b->rchild);
printf(")");
}
}
}
void DestroyBTNode(BTNode *&b)
{
if (b!=NULL)
{
DestroyBTNode(b->lchild);
DestroyBTNode(b->rchild);
free(b);
}
}
think1.cpp
#include "btree.cpp"
typedef struct
{ BTNode *data[MaxSize]; //存放栈中的数据元素
int top; //存放栈顶指针,即栈顶元素在data数组中的下标
} SqStack; //顺序栈类型
void InitStack(SqStack *&s) //初始化栈
{ s=(SqStack *)malloc(sizeof(SqStack));//分配一个是顺序栈空间,首地址存放在s中
s->top=-1; //栈顶指针置为-1
}
void DestroyStack(SqStack *&s) //销毁栈
{
free(s);
}
bool StackEmpty(SqStack *s) //判断栈是否为空
{
return(s->top==-1);
}
bool Push(SqStack *&s,BTNode *e) //进栈
{ if (s->top==MaxSize-1) //栈满的情况,即栈上溢出
return false;
s->top++; //栈顶指针增1
s->data[s->top]=e; //元素e放在栈顶指针处
return true;
}
bool Pop(SqStack *&s,BTNode *&e) //出栈
{ if (s->top==-1) //栈为空的情况,即栈下溢出
return false;
e=s->data[s->top]; //取栈顶指针元素的元素
s->top--; //栈顶指针减1
return true;
}
bool GetTop(SqStack *s,BTNode *&e) //取栈顶元素
{ if (s->top==-1) //栈为空的情况,即栈下溢出
return false;
e=s->data[s->top]; //取栈顶元素
return true;
}
void PreOrder2(BTNode *b) //先序遍历非递归算法
{ BTNode *p;
SqStack *st; //定义一个顺序栈指针st
InitStack(st); //初始化栈st
p=b;
while (!StackEmpty(st) || p!=NULL)
{
while (p!=NULL) //访问结点p及其所有左下结点并进栈
{
printf(" %c",p->data);
Push(st,p);
p=p->lchild; //移动到左孩子
}
//以下考虑栈顶结点
if (!StackEmpty(st)) //若栈不空
{ Pop(st,p);
p=p->rchild; //转向处理其右子树
}
}
printf("\n");
DestroyStack(st); //销毁栈
}
int main()
{
BTNode *b;
CreateBTNode(b,"A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))");
printf("二叉树b:");
DispBTNode(b);
printf("\n");
printf("先序遍历序列:\n");
printf(" 非递归算法:");
PreOrder2(b);printf("\n");
DestroyBTNode(b);
return 1;
}