GSL中稀疏BLAS支持

本文介绍了GSL库中对稀疏矩阵进行基本线性代数操作的支持,包括稀疏BLAS函数gsl_spblas_dgemv和gsl_spblas_dgemm。gsl_spblas_dgemv用于矩阵向量乘法,gsl_spblas_dgemm则实现了稀疏矩阵-矩阵乘法。这两个函数适用于压缩格式的稀疏矩阵,且提供了高效的计算方法。此外,还提到了相关算法的参考文献和CSparse软件库。
摘要由CSDN通过智能技术生成

稀疏BLAS支持

稀疏基本线性代数子程序(BLAS)定义了向量和稀疏矩阵的一组基本操作,可用于创建优化的高级线性代数功能。GSL为稀疏矩阵支持有限数量的BLAS操作。

头文件gsl_spblas.h包含稀疏BLAS函数的原型和相关声明。

44.1 稀疏BLAS操作

int gsl_spblas_dgemv(const CBLAS_TRANSPOSE_t TransA, const double alpha,

const gsl_spmatrix * A, const gsl_vector * x, const double beta,

gsl_vector * y)

    本函数计算矩阵向量乘积和yαop(A)x+βy,其中op(A)=AAT表示TransA = CblasNoTrans, cblastans。不支持计算,因此x和y必须是不同的向量。矩阵A可以是三元组或压缩格式。

int gsl_spblas_dgemm(const double alpha, const gsl_spmatrix * A,

const gsl_spmatrix * B, gsl_spmatrix * C)

    本函数计算稀疏矩阵-矩阵乘积C=αAB。矩阵必须是压缩格式的。

44.2 参考文献和深入阅读

这些函数使用的算法,可以在以下来源找到描述:

• Davis, T. A., Direct Methods for Sparse Linear Systems, SIAM, 2006.

• CSparse software library, https://www.cise.ufl.edu/research/sparse/CSparse

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值