java 普里姆(Prim)算法求图的最小生成树

  1. 基本思想:
    设G=(V,E)是连通网,T=(U,D)是最小生成树,V,U是顶点集合,E,D是边的集合
    ①若从顶点u开始构造最小生成树,则从集合V中取出顶点u放入集合U中,标记顶点v的visited[u]=1;
    ②若集合U中顶点ui与集合V-U中的顶点vj之间存在边,则寻找这些边中权值最小的边,但不能构成回路,将顶点vj加入集合U中,将边(ui,vj)加入集合D中,标记visited[vj]=1;
    ③重复步骤②,直到U与V相等,即所有顶点都被标记为访问过,此时D中有n-1条边。

  2. 设计图的邻接矩阵数据结构

public class MGraph {
    /*图的邻接矩阵表示*/
    int vexs;  //图中结点数目
    char data[];  //存放结点数据
    int [][]weight;  //存放边
    public MGraph(int ve){
        vexs=ve;
        data=new char[ve];
        weight=new int[ve][ve];
    }       
}
  1. 最小生成树算法
public class MinTree {

    /*创建图的邻接矩阵*/
    public void CreateGraph(MGraph graph,int vexs,char data[],int [][]weight){
        int i,j;
        for(i=0;i<vexs;i++){
            graph.data[i]=data[i];
            for(j=0;j<vexs;j++){
                graph.weight[i][j]=weight[i][j];
            }
        }
    }

    public void Prim(MGraph graph,int v){
        /*graph为图的邻接矩阵表示,v为起始顶点*/
        int visited[]=new int[graph.vexs];  // visited[]标记结点是否被访问过
        for(int i=0;i<graph.vexs;i++){   //初始化visited[]
            visited[i]=0;
        }

        visited[v]=1;
        int h1=-1,h2=-1;   //记录边的弧尾和弧头
        int minweight=10000;//minweight记录最小权重
        for(int k=1;k<graph.vexs;k++){  //vexs个顶点,最小生成树中有vexs-1条边

            for(int i=0;i<graph.vexs;i++){  //i顶点表示被访问过的顶点
                for(int j=0;j<graph.vexs;j++){  // j顶点表示未被访问过的顶点
                    if(visited[i]==1 && visited[j]==0 && graph.weight[i][j]<minweight){
                        //寻找已访问的顶点与未访问的定点间的权值最小的边
                        minweight=graph.weight[i][j];
                        h1=i;
                        h2=j;
                    }
                }
            }

            System.out.println("边<"+graph.data[h1]+","+graph.data[h2]+"> 权值:"+minweight);
            visited[h2]=1;   //标记h2被访问过
            minweight=10000;
        }

    }

    public static void main(String args[]){
        char []data=new char[]{'A','B','C','D','E'};
        int vexs=data.length;
        int [][]weight=new int[][]{
                {10000,4,8,5,10000},
                {4,10000,3,10000,7},
                {8,3,10000,6,6},
                {5,10000,6,10000,9},
                {10000,7,6,9,10000}
                };

        MGraph graph=new MGraph(vexs);
        MinTree mt=new MinTree();
        mt.CreateGraph(graph,vexs,data,weight);
        mt.Prim(graph, 0);
    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值