1091. Acute Stroke (30)
One important factor to identify acute stroke (急性脑卒中) is the volume of the stroke core. Given the results of image analysis in which the core regions are identified in each MRI slice, your job is to calculate the volume of the stroke core.
Input Specification:
Each input file contains one test case. For each case, the first line contains 4 positive integers: M, N, L and T, where M and N are the sizes of each slice (i.e. pixels of a slice are in an M by N matrix, and the maximum resolution is 1286 by 128); L (<=60) is the number of slices of a brain; and T is the integer threshold (i.e. if the volume of a connected core is less than T, then that core must not be counted).
Then L slices are given. Each slice is represented by an M by N matrix of 0's and 1's, where 1 represents a pixel of stroke, and 0 means normal. Since the thickness of a slice is a constant, we only have to count the number of 1's to obtain the volume. However, there might be several separated core regions in a brain, and only those with their volumes no less than T are counted. Two pixels are "connected" and hence belong to the same region if they share a common side, as shown by Figure 1 where all the 6 red pixels are connected to the blue one.
Figure 1
Output Specification:
For each case, output in a line the total volume of the stroke core.
Sample Input:3 4 5 2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0Sample Output:
26
首先数据量很大。大于10W左右用栈会爆炸。用BFS就好,因为队列是不停的出去,而DFS最开始的节点可以保留到最后。
然后,用BFS一定要注意先标记再入队!!!!!!!!!!不然就重复入队了。调了半天,心累。直接贴别人代码吧。注意下处理6个方向的方法。很省力。
bfs #include <iostream> #include <queue> using namespace std; const int Maxi=128,Maxj=1286,Maxk=60; int Matrix[Maxi][Maxj][Maxk]; int n,m,l,t,ans=0; int dx[6]={1,0,0,-1,0,0}; int dy[6]={0,1,0,0,-1,0}; int dz[6]={0,0,1,0,0,-1}; struct node { int x,y,z; }; bool israng(int x,int y,int z) { if(x>=0&&x<n&&y>=0&&y<m&&z>=0&&z<l) return true; return false; } void bfs(int x,int y,int z) { int ret=0; node temp; temp.x=x;temp.y=y;temp.z=z; queue<node> q; q.push(temp);Matrix[x][y][z]=0;++ret; while(!q.empty()) { node cur=q.front(); q.pop(); for(int i=0;i<6;++i) { int nx=cur.x+dx[i]; int ny=cur.y+dy[i]; int nz=cur.z+dz[i]; if(israng(nx,ny,nz)&&Matrix[nx][ny][nz]) { Matrix[nx][ny][nz]=0;++ret; temp.x=nx;temp.y=ny;temp.z=nz; q.push(temp); } } } if(ret>=t) ans+=ret; } int main() { cin>>m>>n>>l>>t; for(int k=0;k<l;++k) for(int j=0;j<m;++j) for(int i=0;i<n;++i) cin>>Matrix[i][j][k]; for(int k=0;k<l;++k) for(int j=0;j<m;++j) for(int i=0;i<n;++i) if(Matrix[i][j][k])bfs(i,j,k); cout<<ans; return 0; }