stereo matching
文章平均质量分 70
大青上
这个作者很懒,什么都没留下…
展开
-
立体匹配综述阅读心得之Classification and evaluation of cost aggregation methods for stereo correspondence
学习笔记之基于代价聚合算法的分类 ,主要针对cost aggregration分类,2008 CVPR1. Introduction经典的全局算法有:BP[31]DP[28]SO[20] 本文主要内容有:从精度的角度对比各个算法,主要基于文献【23】给出的评估方法,同时也在计算复杂度上进行了比较,最后综合这两方面提出一个trade-o原创 2016-04-05 19:14:25 · 2380 阅读 · 0 评论 -
立体匹配CNN篇(一) :[LW-CNN] look wider to match image patches by cnn
AbstractIntroductionrelated workmethodA Per-pixel Pyramid Pooling 4PB proposed model实验未解决参考文献Abstract**2016 IEEE SPL 目前在middlebury上排名第二** 提出一种新的CNN 模式,通过一个较大尺寸窗口来学习一个matching cost 与以往的池化层不同(w原创 2016-12-14 23:26:42 · 5784 阅读 · 4 评论 -
[转载]宽基线与窄基线
基线的本意是指立体视觉系统中两摄像机光心之间的距离。依据拍摄两幅图 像的视点位置关系可将对应点匹配问题分为宽基线(Wide Baseline)和窄基线匹配(Short Baseline)。宽基线一词用于匹配时,泛指两幅图像有明显不同的情况下的匹配。产生这种情况的原因有可能为摄像机之间的位置相差很大,也有可能由于摄像机旋转或焦距的变化等因素产生的。宽基线匹配和窄基线匹配的分界不是很严格,但是在窄基线转载 2016-06-16 22:17:01 · 492 阅读 · 0 评论 -
Cross-Scale Cost Aggregation for Stereo Matching 读后感
原文地址 http://blog.csdn.net/wsj998689aa/article/details/44411215 最近,在做立体匹配方向相关的研究,先去网上找最新鲜的论文,看到了这篇文献(简称CSCA),来源于CVPR2014,令我惊奇的是,作者竟然提供了详细的源代码,配置运行了一下,效果还真不错,速度也还可以,具有一定的实用价值,所以拿来和大家分享一下。转载 2016-04-06 21:16:19 · 981 阅读 · 0 评论 -
立体匹配之(二):[MC-CNN] 2015CVPR: Stereo Matching by Training a Convolutional Neural Netw
1 摘要project主页:https://github.com/jzbontar/mc-cnn基于patch的提取与比较,学习其相似性得到一个matching cost,并将正确匹配的patch定义为正样本,其他为负样本。后处理包括:cross-based cost aggregation, semiglobal matching, a left-right consistency chec原创 2016-12-16 23:17:14 · 18084 阅读 · 9 评论 -
立体匹配之(三): A Deep Visual Correspondence Embedding Model for Stereo Matching Costs
摘要也是基于patches的匹配加入亮度信息最后基于全局优化 可惜没有公开代码,也没在排行榜上显示。1 IntroductionThis deep embedding model leverages appearance data to learn visual dissimilarity between image patches, by explicitly mapping raw i原创 2016-12-17 21:13:48 · 2959 阅读 · 1 评论