POJ1094 Sorting It All Out 拓扑排序

9 篇文章 0 订阅
1 篇文章 0 订阅

题意:给定一组字母的大小关系判断他们是否能组成唯一的拓扑序列。
题解:这是典型的拓扑排序,但输出格式上确有三种形式:
1.该字母序列有序,并依次输出;
2.该序列不能判断是否有序;
3.该序列字母次序之间有矛盾,即有环存在。
而这三种形式的判断是有顺序的:先判断是否有环(3),再判断是否有序(1),最后才能判断是否能得出结果(2)。注意:对于(2)必须遍历完整个图,而(1)和(3)一旦得出结果,对后面的输入就不用做处理了。注意顺序。

#include <cstdio>
#include <algorithm>
#include <queue>
#include <cstring>
using namespace std;
const int sz = 26 + 5;
int n,m,cnt;
bool mp[sz][sz];
bool vis[sz];
bool ok;
int in[sz],inn[sz];
queue <int> q;
void topsort(int k){
    bool fl = 0;
    memset(vis, 0, sizeof(vis));
    while(!q.empty()) q.pop();
    for(int i = 1; i <= n; i++)
        inn[i] = in[i];
    for(int ii = 1,p; ii <= n; ii++){
        cnt = 0;
        for(int i = 1; i <= n; i++){
            if(inn[i] == 0 && vis[i] == 0){
                p = i;
                cnt++;
            }
        }
        if(cnt == 0){
            printf("Inconsistency found after %d relations.\n", k);
            ok = 1;
            return;
        }
        if(cnt > 1)
            fl = 1;
        q.push(p);
        vis[p] = 1;
        for(int j = 1; j <= n; j++)
            if(mp[p][j]) inn[j]--;
    }
    if(fl == 1) return;
    printf("Sorted sequence determined after %d relations: ", k);
    while(!q.empty()){
        printf("%c", q.front() + 'A' - 1);
        q.pop();
    }
    puts(".");
    ok = 1;
}
int main(){
    while(scanf("%d%d", &n, &m) && n && m){
        memset(mp, 0, sizeof(mp));
        memset(in, 0, sizeof(in));
        ok = 0;
        for(int i = 1; i <= m; i++){
            char s[10];
            scanf("%s", s);
            if(ok == 1) continue;
            if(!mp[s[0] - 'A' + 1][s[2] - 'A' + 1])
                in[s[2] - 'A' + 1]++;
            mp[s[0] - 'A' + 1][s[2] - 'A' + 1] = 1;
            topsort(i);
        }
        if(ok == 1) continue;
        printf("Sorted sequence cannot be determined.\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值