对Cycle-GAN网络结构的修改,将原论文结构(下图)中的的ResnetGenerator(图中的GeneratorA2B和GeneratorB2A)替换成VAEGenerator,构建了Cycle-VAE-GAN的新结构来进行相机风格间的转换。
code:https://github.com/xr-Yang/CycleGAN-VAE-for-reid
对新结构进行了一定的实验测试,具体实验过程和测试过程如下。
- 实验过程:
1.利用Cycle-VAE-GAN训练market1501数据集下各相机风格的一个转换模型。
2.生成各相机间风格转换的图像。
- 测试过程:
1.定性分析:直观的对比两种方法生成图像的质量和清晰度。
2.定量分析:(1)通过FID(Frechet Inception Distance)和SSIM(Structural SIMilarity)两个公认的评价GAN网络生成图像质量的指标,对比测试Cycle-VAE-GAN和Cyle-GAN生成图像的质量。(2)通过原论文的训练方式加入Cycle-VAE-GAN生成的图像,对比ReID模型的mAP和rank-1
- 实验结果
1.定性的比较两种方法生成图像的