Cycle-VAE-GAN《Camera Style Adaptation for Person Re-identification》替换CycleGAN中生成器为VAE

      对Cycle-GAN网络结构的修改,将原论文结构(下图)中的的ResnetGenerator(图中的GeneratorA2B和GeneratorB2A)替换成VAEGenerator,构建了Cycle-VAE-GAN的新结构来进行相机风格间的转换。

code:https://github.com/xr-Yang/CycleGAN-VAE-for-reid

   对新结构进行了一定的实验测试,具体实验过程和测试过程如下。

  •    实验过程:

    1.利用Cycle-VAE-GAN训练market1501数据集下各相机风格的一个转换模型。

    2.生成各相机间风格转换的图像。

  •    测试过程:

    1.定性分析:直观的对比两种方法生成图像的质量和清晰度。

    2.定量分析:(1)通过FID(Frechet Inception Distance)和SSIM(Structural SIMilarity)两个公认的评价GAN网络生成图像质量的指标,对比测试Cycle-VAE-GAN和Cyle-GAN生成图像的质量。(2)通过原论文的训练方式加入Cycle-VAE-GAN生成的图像,对比ReID模型的mAP和rank-1

  •   实验结果

  1.定性的比较两种方法生成图像的

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值