Naive RAG 是一种基础的 Retrieval-Augmented Generation (RAG) 模型架构。它通过将信息检索与文本生成结合在一起,以提高生成答案的准确性和相关性。与高级的 RAG 变体相比,Naive RAG 更加简单直接,通常作为入门或基础版本来使用。具体来说,Naive RAG 通常包括以下几个主要组件或步骤:
1. Infer Pipeline
- Infer Pipeline 是整个 Naive RAG 过程的核心流程。它通常包括以下步骤:
- 输入处理: 接收用户输入或问题。
- 信息检索: 根据输入从知识库或文档库中检索相关内容。
- 文本生成: 利用检索到的内容生成回答或文本。
- 输出: 将生成的答案返回给用户。
2. Dataset Loader
- Dataset Loader 负责加载模型所需的数据集。它可以包括用于训练、验证和测试的数据集,通常包含输入问题及其对应的答案或参考文档。这个组件的功能是确保模型能够访问到正确的数据进行训练和推理。
3. Retriever Loader
- Retriever Loader 用于加载和配置检索模型。检索模型负责从大型知识库中找到与输入问题最相关的文档或片段。Retriever Loader 确保