什么是Naive RAG,具体包括Infer Pipeline、 Dataset Loader、Retriever Loader、LLM Loader、 Instruction Loader

Naive RAG 是一种基础的 Retrieval-Augmented Generation (RAG) 模型架构。它通过将信息检索与文本生成结合在一起,以提高生成答案的准确性和相关性。与高级的 RAG 变体相比,Naive RAG 更加简单直接,通常作为入门或基础版本来使用。具体来说,Naive RAG 通常包括以下几个主要组件或步骤:

1. Infer Pipeline

  • Infer Pipeline 是整个 Naive RAG 过程的核心流程。它通常包括以下步骤:
    1. 输入处理: 接收用户输入或问题。
    2. 信息检索: 根据输入从知识库或文档库中检索相关内容。
    3. 文本生成: 利用检索到的内容生成回答或文本。
    4. 输出: 将生成的答案返回给用户。

2. Dataset Loader

  • Dataset Loader 负责加载模型所需的数据集。它可以包括用于训练、验证和测试的数据集,通常包含输入问题及其对应的答案或参考文档。这个组件的功能是确保模型能够访问到正确的数据进行训练和推理。

3. Retriever Loader

  • Retriever Loader 用于加载和配置检索模型。检索模型负责从大型知识库中找到与输入问题最相关的文档或片段。Retriever Loader 确保
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值