缩放因子 lora_alpha
在 LoRA(Low-Rank Adaptation) 中起到的是调节作用。LoRA 是一种用于高效微调大规模预训练模型的方法,特别是在 NLP 模型中应用广泛。lora_alpha
是其中的一个重要参数。
LoRA 的基本概念
LoRA 的核心思想是在不改变原有模型的情况下,通过在模型的某些层中引入低秩矩阵来进行微调。这种方法允许在不显著增加计算成本的情况下,对大规模模型进行微调。
具体来说,假设你有一个大的权重矩阵 ( W ),LoRA 方法会用两个低秩矩阵 ( A ) 和 ( B ) 进行微调,其中:
- ( A ) 和 ( B ) 的维度通常很低,使得 ( A \cdot B ) 的秩(rank)比原始矩阵 ( W ) 的秩要低。
lora_alpha
的作用
在 LoRA 中,lora_alpha
是一个缩放因子,用来控制微调部分 ( A \cdot B ) 对原始权重矩阵 ( W_0 ) 的影响。其目的是为了更好地调节微调的幅度,从而避免对原始模型造成过大的扰动。
具体来说,调整后的模型权重可以表示为: