【大模型面试】缩放因子lora_alpha

缩放因子 lora_alphaLoRA(Low-Rank Adaptation) 中起到的是调节作用。LoRA 是一种用于高效微调大规模预训练模型的方法,特别是在 NLP 模型中应用广泛。lora_alpha 是其中的一个重要参数。

LoRA 的基本概念

LoRA 的核心思想是在不改变原有模型的情况下,通过在模型的某些层中引入低秩矩阵来进行微调。这种方法允许在不显著增加计算成本的情况下,对大规模模型进行微调。

具体来说,假设你有一个大的权重矩阵 ( W ),LoRA 方法会用两个低秩矩阵 ( A ) 和 ( B ) 进行微调,其中:
- ( W \approx W_0 + A \cdot B )

  • ( A ) 和 ( B ) 的维度通常很低,使得 ( A \cdot B ) 的秩(rank)比原始矩阵 ( W ) 的秩要低。

lora_alpha 的作用

在 LoRA 中,lora_alpha 是一个缩放因子,用来控制微调部分 ( A \cdot B ) 对原始权重矩阵 ( W_0 ) 的影响。其目的是为了更好地调节微调的幅度,从而避免对原始模型造成过大的扰动。

具体来说,调整后的模型权重可以表示为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值