以下是常见大模型的编码器和解码器类型总结,包括GPT和DeepSeek R1,以及采用这些结构的理由:
模型名称 | 编码器-解码器类型 | 结构理由 |
---|---|---|
GPT系列 | Decoder-only | GPT系列采用Decoder-only结构,专注于自回归生成任务,通过掩码自注意力机制生成文本。 |
BERT | Encoder-only | BERT采用Encoder-only结构,专注于双向上下文理解,适用于分类、问答等任务。 |
T5 | Encoder-Decoder | T5采用完整的Encoder-Decoder结构,适用于多种文本生成和理解任务,统一了任务格式。 |
BART | Encoder-Decoder | BART结合了双向编码和自回归解码,适用于文本生成和重构任务。 |
DeepSeek R1 | Decoder-only | DeepSeek R1采用Decoder-only结构,专注于高效的自回归生成,适用于大规模文本生成。 |
结构选择的理由:
-
Decoder-only(如GPT、DeepSeek R1):
- 适用于自回归生成任务,如文本生成、对话系统。
- 通过掩码自注意力机制,模型只能看到当前及之前的token,适合逐词生成。
- 结构简单,训练和推理效率高。
-
Encoder-only(如BERT):
- 适用于需要理解整个上下文的任务,如文本分类、命名实体识别。
- 双向注意力机制可以捕捉前后文信息,提升理解能力。
-
Encoder-Decoder(如T5、BART):
- 适用于需要同时理解和生成文本的任务,如翻译、摘要生成。
- Encoder负责理解输入,Decoder负责生成输出,结构灵活,适合多任务学习。
这些结构的选择取决于任务需求,Decoder-only适合生成任务,Encoder-only适合理解任务,而Encoder-Decoder则兼顾两者。