递推求解——状态转移方程
在上一步已经完成的情况下,按照一定规则继续递归到下一步,则可利用上一步到下一步之间的规则进行求解 如:F(n)=f(n-1)+n
Fibnacci数列:1 1 2 3 5 8 13 21 34......
f(1)=1
f(2)=2
状态转移方程:f(n)=f(n-1)+f(n-2) (n>2)
f(n)=f(n-1)+f(n-2)+f(n-3)
例题:输入N个人排队,女生最少俩个排队在一起,男生无要求,如 女女男女女 男 女女
解题思路:按照合法性分类,最后一个是男或者是女,若最后一个是女则女前一个必然是女
OOOOOOOO男{前n-1个O合法:f(n-1) 前n-1个O不合法:0 }
OOOOOOO女女 {前n-2个O合法:f(n-2) 前n-2个O不合法:f(n-4)
综上所述F(n)=f(n-1)+f(n-2)+f(n-4)
或者
F(n)=f(n,1)+f(n,2)_____以女生2结尾的排列加上以男生1结尾的排列
f(n,1)=f(n-1)=f(n-1,1)+f(n-1,2)
f(n,2)=f(n-1,2)+f(n-2,1) 以女生结尾的,前一个(n-1)必然是女生2,前n-1合法则f(n-1,2),前n-1不合法:n-1依旧为女,n-2为女,n-3必然为男则f(n-2,1)
{ 2n}
卡特兰数:1 2 5 14 42 132....列式为:{ n } /(n+1) 及为Cn 2n /(n+1)
例如:
多边形内部划分三角形(划分线切割不能重合)
F(n)=f(0)*f(n-1)+f(1)*f(n-2)+f(2)*f(n-3)+......+f(n-1)*f(0) f(0)=1
当n取4时讨论
1、1和2连接为一对,其余左边还有三对,右边零对,则有f(0)*f(n-1)
2、1和4连接为一对,其余左边还有俩对,右边一对,则有f(1)*f(n-2)
3、1和6连接为一对,其余左边还有一对,右边俩对,则有f(2)*f(n-3)
4、1和8连接为一对,其余左边还有零对,右边三对,则有f(3)*f(0)