算法笔记 4 -(递推求解)

递推求解——状态转移方程

在上一步已经完成的情况下,按照一定规则继续递归到下一步,则可利用上一步到下一步之间的规则进行求解  如:F(n)=f(n-1)+n

Fibnacci数列:1 1 2 3 5 8 13 21 34......

f(1)=1

f(2)=2

状态转移方程:f(n)=f(n-1)+f(n-2)   (n>2)

 

 f(n)=f(n-1)+f(n-2)+f(n-3)

例题:输入N个人排队,女生最少俩个排队在一起,男生无要求,如  女女男女女    男  女女

解题思路:按照合法性分类,最后一个是男或者是女,若最后一个是女则女前一个必然是女

                OOOOOOOO男{前n-1个O合法:f(n-1)   前n-1个O不合法:0  }

                OOOOOOO女女   {前n-2个O合法:f(n-2)   前n-2个O不合法:f(n-4)

综上所述F(n)=f(n-1)+f(n-2)+f(n-4)

或者

F(n)=f(n,1)+f(n,2)_____以女生2结尾的排列加上以男生1结尾的排列

f(n,1)=f(n-1)=f(n-1,1)+f(n-1,2)

f(n,2)=f(n-1,2)+f(n-2,1)  以女生结尾的,前一个(n-1)必然是女生2,前n-1合法则f(n-1,2),前n-1不合法:n-1依旧为女,n-2为女,n-3必然为男则f(n-2,1)

                                                             {  2n}

卡特兰数:1 2 5 14 42 132....列式为:{ n } /(n+1)   及为Cn 2n /(n+1)

例如:

 

多边形内部划分三角形(划分线切割不能重合)

 

 

 F(n)=f(0)*f(n-1)+f(1)*f(n-2)+f(2)*f(n-3)+......+f(n-1)*f(0)      f(0)=1

当n取4时讨论

1、1和2连接为一对,其余左边还有三对,右边零对,则有f(0)*f(n-1)

2、1和4连接为一对,其余左边还有俩对,右边一对,则有f(1)*f(n-2)

3、1和6连接为一对,其余左边还有一对,右边俩对,则有f(2)*f(n-3)

4、1和8连接为一对,其余左边还有零对,右边三对,则有f(3)*f(0)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值